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SUMMARY

In this paper, we study the nearest stable matrix pair pnobigven a square matrix paj&, A), minimize
the Frobenius norm ofAg, A 4) such that(E + Ag, A+ A4) is a stable matrix pair. We propose a
reformulation of the problem with a simpler feasible setfityaducing dissipative Hamiltonian (DH) matrix
pairs: A matrix pair(E, A) is DH if A = (J — R)Q with skew-symmetricJ, positive semidefinite?, and

an invertibleQ such thatQ” E is positive semidefinite. This reformulation has a conveasiiele domain
onto which it is easy to project. This allows us to employ d gaadient method to obtain a nearby stable
approximation of a given matrix pair. Copyrig{@ 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study the stability and instability under perturbatidos systems of linear time-invariant
differential-algebraic equations (DAES) of the form

Ei = Az + §, 1)

on the unbounded intervak= [ty, o), whereE, A € R™™ andf € C(I,R™) is sufficiently smooth.
HereR™" denotes the real x n matrices and’(I, R™) denotes the set of all continuous functions
from I to R™. Systems of the formlj arise from linearization around stationary solutionsmitial
value problems for general implicit systems of DAEs

F(t,x, i) =0, )

with an initial condition
x(to) = o, (3)

where we assume that € C(I x D, x D;,R™) is sufficiently smooth an®,., D; C R™ are open
sets [L6].
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2 N. GILLIS, V. MEHRMANN, P. SHARMA

To characterize regularity and stability for the linear stamt coefficient case we introduce
the following notation. A square matrix pajz, A) with £, A € R™" is calledregular if the
matrix pencilzE — A is regular, i. e. ifdet(AE — A) # 0 for some\ € C, otherwise it is called
singular. For a regular matrix paifE, A), the roots of the polynomialet(zE — A) are calledinite
eigenvaluef the pencilzE — A or of the pair(E, A), i. e. A € C is a finite eigenvalue of the
pencil zE — A if there exists a vectar € C™ \ {0} such thatAE — A)x = 0, andz is called an
eigenvectof zE — A corresponding to the eigenvalue A regular pencilz £ — A hasco as an
eigenvaluef E is singular.

Any regular matrixpair (E, A) (with E, A € R™"™) can be transformed td/eierstrald canonical
form[11], i. e. there exist nonsingular matricé§ T' € C™" such that

I, 0

E:W[ 0 N

J 0
]T and A_W{O Inq]T’

whereJ € C%1? is a matrix inJordan canonical fornassociated with the finite eigenvalues of the
pencilzE — AandN € C* %" 1 is a nilpotent matrix in Jordan canonical form correspogdm
n — g times the eigenvalueo. If ¢ < n andN has degree of nilpotenaye {1,2,...},i.e.N¥ =0
andN® #0fori=1,...,v— 1, thenv is called theindex of the pair(E, A). If E is nonsingular,
then by convention the index is= 0. A pencil zE — A is of index at most one if it is regular
with exactlyr := rank(E) finite eigenvalues, see e. @7 27]. In this case the: — r copies of the
eigenvaluex are semisimple (non-defective).

The literature on (asymptotic) stability of constant caédiint DAES is very ambiguous, see e. g.
[4, 8, 27], and the review in 10]. This ambiguity arises from the fact that some authors ictams
only the finite eigenvalues in the stability analysis andwlthe index of the pencilE, A) to be
arbitrary, others consider regular high index penclis— A as unstable by considering to be on
the imaginary axis. We make the following definition.

Definition 1
Consider the initial value probleml;

i) The linear DAE () is regular if the matrix paifE, A) is regular [Lg].

ii) If the pair (E, A) is regular and of index at most one, then the initial valudfmm (1) & (3)
with a consistent initial value, is stableif all the finite eigenvalues of £ — A are in the
closed left half of the complex plane and those on the imagiagis are semisimple3[ 10].
In this cas€ E, A) is called a stable matrix pair.

iii) If the pair (E, A) is regular and of index at most one, then the initial valuebjgm (1) &
(3) with a consistent initial value, is asymptotically stabléf all the finite eigenvalues of
zE — A are in the open left half of the complex plar& 10]. In this casq E, A) is called a
asymptotically stable matrix pair.

In this paper, we are interested in the problem of finding maliperturbations to the system
matriceskl + AFE andA + A A of an unstable DAEX) that puts the system on the boundary of the
stability region. This problem is closely related to thessiaal state-feedback-stabilization problem
in descriptor control problems with = Bu for some control function, see e. g.3, 9, 22], where
one chooses feedbacks= Kz so that the closed-loop descriptor system

Ei = (A+ BK)x

is asymptotically stable. However, the perturbations astricted only inA while in derivative
feedback one also allows feedbackst BG, see b, 6]. Instead of the feedback stabilization
problem, we extend the nearest stable matrix probleri2f]5] to matrix pencils and we study the
following problem.

Problem
For a given paif £, A) € R™" x R™™ find the nearest asymptotically stable matrix p@if, X).
More precisely, leS be the set of matrix pair&V/, X) € R™"™ x R™" that are regular, of index at
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COMPUTING NEAREST STABLE MATRIX PAIRS 3

most one, and have all finite eigenvalues in the open leftglalfe, then we wish to compute

inf {||E— M|%+ |4 - X|J?
(Ml,I)l()eS{H =+l %}

where|| - ||  stands for the Frobenius norm of a matrix.

In the following we usenearest stable matrix pair probleto refer to the above problem. This
problem is the complementary problem to the distance talnildy for matrix pairs, seed] for
complex pairs, andl[]] for a survey on this problem. Since we require a stable paietregular it
is also complementary to the distance to the nearest singeteil, which is a long-standing open
problem [7, 14, 21].

The nearest stable matrix pair problem occurs in systemntifdgion where one needs to identify
a stable matrix pair depending on observations, similaréomearest stable matrix problefr?[ 25].

For example, when a real-world problem is approximated bystesn model 1), the stability of the
physical system may not be preserved, i. e., the approamatiocess (for example, finite element
or finite difference models, linearization, or model ordeduction) may make the stable system
unstable. The unstable system then has to be approximateddgrby stable system by perturbing
E andA.

For ordinary differential equations, i. e. whéh= I,,, stability solely depends on the eigenvalues
of the matrix A. Recently, in 2] a new algorithm was proposed to compute a nearby stable
perturbation to a given unstable matrix by reformulatings thighly nonconvex problem into
an equivalent optimization problem with a convex feasildgion. This reformulation uses the
fact that the set of stable matrices can be characterizetieaset ofdissipative Hamiltonian
(DH) matrices We recall from 2] that a matrixA € R™" is called a DH matrix ifA can be
factored ast = (J — R)Q forsomeJ, R, Q € R™" suchthat/” = —J, R = R = 0, i. e. is positive
semidefinite, and) = Q7 - 0, i. e. is positive definite. In this way is stable if and only if4 is a
DH matrix, see alsolf, 19, 20].

In this paper we extend the ideas @] from the matrix case to the pencil case and discuss the
problem of computing the nearest stable matrix pair. Thésdballenging problem, since the Set
of all stable matrix pairs is neither open nor closed witlpess to the usual nhorm topology as the
following example demonstrates.

Example 1
Consider the matrix pair

10 0 -1 0 2
(E,A=[]loo0oo0]|,] 0 10
00 0 0 0 1

Itis easy to check thdtF, A) is regular, of index one, and asymptotically stable withahy finite
eigenvalue\; = —1, and thug E, A) € S. Consider the perturbatioa g, A 4), where

eqc 0 O 6 0 0
Ag = 0 € €3 and Ay = 0 0 O R
0 0 O 0 0 O

and the perturbed palF + Ag, A+ Ay4). If we leté = e; = e = 0 ande; > 0, then the perturbed
pair is still regular and all finite eigenvalues are in opdhHalf plane, but it is of index two. If we
letd = e; = €3 = 0 andes > 0, then the perturbed pair is regular and index one, but hagihite
eigenvalues; = —1 andXy, = 1/e2 > 0, and thus is not stable. This shows tSas$ not open. If we
lete; = —0, e = €3 = 0, then as) — 1 the perturbed pair becomes non-regular. This showsSthat
is not closed.

It is also clear that the sétis highly nonconvex, seef], and thus it is very difficult to find
a globally optimal solution of the nearest stable matrix gaoblem. To address this challenge,
we follow the strategy suggested it?] for matrices and reformulate the problem of computing the
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4 N. GILLIS, V. MEHRMANN, P. SHARMA

nearest stable matrix pair by extending the concept offthéisie Hamiltonian matrices wissipative
Hamiltonian matrix pairs (DH pairs)The DH parametrization/representation of a stable LTlesyst
can be useful in other applications. Some of these appicaitinclude analysis of disk brake
squeal 19, Example 1.1], mass-spring-damper dynamical systefts Example 4.1], and circuit
simulation and power system modelin@9] Example 1.2], where one is interested in knowing the
stability or instability under the perturbation of one (oom) of the matrice#, J, R, and(Q. In
such DH models of physical systems the maRixlescribes the damping effects in the system and
thus perturbing onlyR is of particular interest. However, in this paper we focush@nearest stable
pair as the main application, as it is the problem that draveamrk.

The paper is organized as follows. In Section 2, we introcard study DH matrix pairs. We
provide several theoretical results and characterizeghefsasymptotically stable matrix pairs in
terms of DH matrix pairs. A reformulation of the nearest Eahatrix pair problem using the DH
characterization is obtained in Section 3. In Section 4, mpase a fast gradient method to solve
the reformulated optimization problem. The effectivenekthe proposed algorithm is illustrated
by several numerical examples in Section 5.

In the following, byiR, we denote the imaginary axis of the complex plane/byhe identity
matrix of sizen x n, and bynull(E) the nullspace of a matrix.

2. DISSIPATIVE HAMILTONIAN MATRIX PAIRS

In this section, we construct the setup to approach the seatable matrix pair problem. As
demonstrated in Examplg the feasible sef is not open, not closed, non-bounded, and highly
nonconvex, thus it is very difficult to work directly with tisetS. For this reason we reformulate the
nearest stable matrix pair problem into an equivalent agtition problem with a simpler feasible
set. For this, we extend the idea of a DH matrix frakg][to dissipative Hamiltonian matrix pairs.

Definition 2

A matrix pair (E, A), with E, A € R™", is called adissipative Hamiltonian (DH) matrix paiif
there exists an invertible matrig € R™" such thaty” £ = ETQ > 0, andA can be expressed as
A= (J—-R)QwithJ' = —J,R" = R~ 0.

This definition of a DH matrix pair is a natural generalizataf that of a DH matrix, because for
a standard DH matrix paill,,, A) (whenE = I,,), A is a DH matrix [L2]. Note however, that this
definition is slightly more restrictive than that of port4datonian descriptor systems i][ where
it is not required that the matrig is invertible. In the following we call the matrik in a DH matrix
pair (E, (J — R)Q) thedissipation matrixas in the DH matrix case.

A DH-matrix pair is not necessarily regular as the followgmple shows.

Example 2
The pair(E, (J — R)Q) with

100 0 20 100 100
E=1]0 1 0|,J=|-2 0 ol,R=10 1 0|,Q=10 1 of,
000 0 0 0 00 0 00 1

is a DH matrix pair, butE, (J — R)Q) is singular, sincelet(zE — (J — R)Q) = 0.

It is easy to see that if the matricésand A have a common nullspace, then the fdit A) is
singular, but the converse is in general not true, see &.ddpwever, for singular DH matrix pairs,
the property tha@ is invertible guarantees that the converse also holds.

Lemma 1
Let (E, (J — R)Q) be a DH-matrix pair. TheQE, (J — R)Q) is singular if and only if

null(E) Nnull((J — R)Q) # 0.
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COMPUTING NEAREST STABLE MATRIX PAIRS 5

Proof
The direction(«) is immediate. For the other direction, |&F, (J — R)Q) be singular, i. e.
det(zE — (J — R)Q) = 0. Let A € C be such thaRe () > 0 and letz € C™ \ {0} be such that

(J — R)Qz = A\Ex. 4)

Since( is nonsingular, we have th&z # 0, and we can multiply witHQz)? from the left to
obtain
QT JQr — 2" QT RQx = \e QT Ex, (5)

wherez!’ denotes the complex conjugate of a vectohis implies that:? Q7 Ex = 0, because
otherwise from §) we would have

A QT RQx
Re (X)) = T OTEa <0,
sinceQT RQ = 0 (asR = 0), andQ” E = 0. But this is a contradiction to the fact thae (\) > 0.
Thereforez? QT Ex = 0 and alsoQ” Exz = 0, and this implies thatzz = 0 as @ is invertible.
Inserting this in §), we get(J — R)Qx = 0,i.e.0 # z € null(E) Nnull((J — R)Q). O

Lemmal gives a necessary and sufficient condition for a DH-matrixtpabe singular. However,
if the dissipation matrix is positive definite, then regularity is assured, as showtherfollowing
corollary.

Corollary 1
Let (E, (J — R)Q) be a DH matrix pair. IfR is positive definite then the pair is regular.

Proof
By Lemmal, a necessary condition for the pentll — (J — R)Q to be singular is that neithe?
nor (J — R)Q is invertible. Thus the result follows immediately by thetfthat if R > 0 in a DH-
matrix pair (E, (J — R)Q), then(J — R)Q is invertible. Indeed, suppose there exists C \ {0}
suchthatJ — R)Qx = 0,thenwe have” Q7 (J — R)Qz = 0. This impliest” Q7 RQx = 0, since
JT = —J. SinceQ is invertible and thu§)x # 0, this is a contradiction to the assumption ti&aits
positive definite. O

In the following lemma, which is the matrix pair analogue d2]Lemma 2], we localize the
finite eigenvalues of a DH-matrix pair.

Lemma 2
Let (E,(J — R)Q) be a regular DH-matrix pair and lek(z) := zE — (J — R)Q. Then the
following statements hold.

1) Allfinite eigenvalues of the pendll(z) are in the closed left half of the complex plane.

2) The pencilL(z) has a finite eigenvalug on the imaginary axis if and only iRQx = 0 for
some eigenvectar of the pencilz E — J@Q associated with.

Proof
Let A € C be an eigenvalue ofE — (J — R)Q and letz € C™ \ {0} be such that

(J — R)Qx = AEx. (6)
Multiplying (6) by 27 QT from the left, we get
21QT(J — R)Qx = Az QT Ex. (7)

Note thatz” QT Ex # 0, because itt’ QT Ex = 0, then we haveQ” Exz =0 asQ”E > 0, and
thus Exz = 0 as @ is invertible. Using this in §), we have(J — R)Qz = 0. This implies that
z € null(E) Nnull((J — R)Q) which is, by Lemmal, a contradiction to the regularity of the pair
(£, (J - R)Q).
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6 N. GILLIS, V. MEHRMANN, P. SHARMA

Thus, by ) we have
zHQTRQx
2HQTEx — 7
becaus&®” RQ = 0 asR = 0, andz" QT Ex > 0. This completes the proof of 1).

In the proof of 1), if A € iR, then from B) it follows that 7 QT RQx = 0. This implies that
RQz = 0, sinceR = 0. Using this in ¢) implies that \E — JQ)z = 0.

Conversely, let € iR andxz € C™ \ {0} be such thaRQz = 0 and(A\E — JQ)z = 0. Then this
trivially implies that) is also an eigenvalue of the pen&if — (J — R)Q with eigenvector:. This
completes the proof of 2)0

Making use of these preliminary results, we have the follmystability characterization.

Re(A) = — (8)

Theorem 1
Every regular DH matrix paifE, (J — R)Q) of index at most one is stable.

Proof
In view of Lemma2, to prove the result it is sufficient to show thatife R is an eigenvalue of the
pencilzE — (J — R)Q, then) is semisimple.

Let us suppose that € iR is a defective eigenvalue of the pene — (J — R)Q and the set
{zo,x1,..., 211} forms a Jordan chain of lengthassociated with\, see e. g.13], i. €. 2o # 0
and

(AE—(J—R)Q)zo =0, (AE—(J—R)Q)x; = Eu,
(AE—(J—R)Q)xs = Eu,
: ©)
()\E — (J - R)Q)a:k_l = Eajk_g.
Note that by Lemma, we have that\E — (J — R)Q)zo = 0 implies that
()\E — JQ)L]S‘() =0and RQSE() =0. (10)
By (9), o andx; satisfy
()\E — (J — R)Q)l‘l = EI(). (11)
Multiplying (11) by 2 QT from the left, we obtain
2 AQTE — (QTJQ — QTRQ))xy = x QT Exo.
This implies that
—2!(AQTE — QT JQ)zo + 2 QT RQzo = ' Q" Exy, 12)

where the last equality follows by the fact th@f' E = ETQ, J* = —J, and R” = R. Thus,
by using (0) in (12), we getxf QT Exq = 0. But this implies thatQ” Ezq =0 as QTE =0
and Exo = 0 as @ is invertible. Sincex, is an eigenvector of the pencilE — (J — R)@ to

A, Exo =0 implies that(J — R)Qzo = 0. This means thad # zy € null(E) Nnull((J — R)Q),
which contradicts the regularity of the p&iF, (J — R)Q). Therefore there does not exist a vector
1 € C™ satisfying @). Hence\ is semisimple. [

We note that the proofs of Lemniaand Theoreml highly depend on the invertibility of).
In fact, we have used the fact th@@” E, Q7 (J — R)Q) is regular, becausé@ invertible implies
that (£, (J — R)Q) is regular if and only if(QTE,Q*(J — R)Q) is regular. If Q is a singular
matrix andQ”E = ETQ = 0, then the paifQT E, QT (J — R)Q) is always singular, but the pair
(E, (J — R)Q) may be regulai=or example, consider the matrices

10 0 1 10 10
IO i B PR A
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COMPUTING NEAREST STABLE MATRIX PAIRS 7

0 0
0 1
zero, and has two simple eigenvalueand —0.5, which implies that(E, (J — R1)Q) is stable.
On the other hand the matrix paiF, (J — R2)Q) is regular, of index zero, and has a defective
eigenvalue of multiplicity two at the origin, which implig¢isat it is not stable. This shows that the
invertibility of @ is necessary in Lemniaand Theoreni.

However, parts of Lemma and Theoreni also hold for singulat) with an extra assumption
on the eigenvectors of the penceiE — (J — R)Q, as stated in the next result. This result is a
generalization of]2, Lemma 2] for DH matrices with singuldp.

and the singular matrig) = . Then the matrix paifE, (J — R1)Q) is regular, of index

Theorem 2

Let (E, (J — R)Q) be a regular matrix pair witth? = —J, R = 0, and a singulap such that
ETQ = 0. If no eigenvector: of L(z) := zE — (J — R)Q with respect to a nonzero eigenvalue
satisfies9” Ex = 0, then the following hold.

1) Allfinite eigenvalues of the pendl(z) are in the left half of the complex plane.

2) L(z) has a finite eigenvalug on the imaginary axis if and only iRQx =0 for some
eigenvector: of the pencilz E — JQ with respect to eigenvalue

3) If 0 #£ X € iR is an eigenvalue of £ — (J — R)Q, then\ is semisimple.

Note that if £ = I, in Theorem2, then( is positive semidefinite and singular, and the extra
condition on the eigenvectors of peneil,, — (J — R)Q (or, equivalently of matriX.J — R)Q) is
trivially satisfied. In this case Theorefroincides with the matrix casé?, Lemma 2].

The following result from 18] gives an equivalent condition for checking asymptotic¢abdgity
of such a paifE, A) by using Lyapunov’s Theorem.

Theorem 3[19])
Consider a pair(E, A) with E, A € R™". The pair is regular, of index at most one and
asymptotically stable if and only if there exists a nonsiagl’ € R™" satisfying

VIA4+ ATV <0 and ETV=VTE>o. (13)

Theorem 4
Let (E, A) be a matrix pair, wher&, A € R™". Then the following statements are equivalent.

1) (E, A) is a DH-matrix pair with positive definite dissipation matri
2) (E, A) is regular, of index at most one, and asymptotically stable.

Proof

1) = 2) Let (E, A) be a DH-matrix pair with positive definite dissipation mafri. e., A can be
expressed ag = (J — R)Q for someR = 0, J© = —J, and nonsingula® with Q7 E = 0. Clearly,
by Corollaryl (E, (J — R)Q) is regular. Furthermorg E, (J — R)Q) has all its finite eigenvalues
in the open left half plane. To see this, }et C be a finite eigenvalue of the penei — (J — R)Q.
Then by Lemma it follows thatRe ()\) < 0, andRe (A) = 0 if and only if there exists: = 0 such
that(AF — JQ)x = 0 and0 # Qx € null(R). Butnull(R) = {0} asR > 0.

To show that(E, (J — R)Q) is of index at most one, we set:= rank(E') and assume that
U € R™™" is an orthogonal matrix whose column spans (fijl Then, seels], (E,(J — R)Q)
is of index at most one if and only if ragk £ (J — R)QU |) = n. Suppose that € C" € \{0}
issuchthat” [ E (J— R)QU | = 0. Then we have the two conditions

tHE =0, 2" (J - R)QU =0. (14)
Since @ is invertible, we haver” EQ—' = 0 and hence EQ~!)z = 0 becauseEQ~! > 0 as
ETQ = 0. This shows thaf)~'z € null(E), and thus there existsc C"~" such tha)—'z = Uy,
or, equivalentlyr = QUy. Using this in (4), we obtain that:* (J — R)x = 0. This implies that

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
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8 N. GILLIS, V. MEHRMANN, P. SHARMA

2HJx =0 andz Rz = 0 asJ is skew-symmetric andk is symmetric. But this is a contradiction
to the assumption tha - 0. This completes the proof af) = 2).

2) = 1) Consider a pai(E, A), with £, A € R™", that is regular, asymptotically stable, and
of index at most one. Then by Theore& there exist an nonsingulaf € R™™ such that
VITA4+ ATV <0andETV = VTE = 0. Setting

AV — (VT AV (V)T

Q:Va J = 9 ’ 9 )

(15)
we haveJ” = —J, ETQ=QTE =0, andR - 0, asV is invertible. Applying the Lyapunov
inequality

VI(AV ) + @V )V vTA+ ATV

T _ =
VRV = 5 5 >0,

the assertion follows.O

An important consequence of the proof of Theoréns an explicit constructionof the DH
characterization of a matrix paf#, A): (i) solve the system1Q) (if the system does not admit
a solution, the pair is not regular, of index at most one, ayurgototically stable), and (ii) usé& %)
to construct{J, R, Q).

We conclude this section with the observation that the s&Hbimatrix pairs is invariant under
orthogonal transformations of the matrix pair.

Lemma 3
Let (£, A) be a DH matrix pair, and |’ andV" be orthogonal matrices such that= UEV and
A=UAV.Then(E, A) is a DH pair.

Proof
Since(E, A) is DH, we haved = (J — R)Q for someJ” = —J, R = 0, and invertible) such that
QTE > 0. Using the orthogonality of’ andV’, we have

(E,A) = (UEV,UAV)= (UEV,U(J—R)QV)= (UEV,U(J— R)UTUQV)
= (UEV,(UJUT —URUTUQV) = (E — (J — R)Q),

whereJ := UJUT, R := URUT, andQ := UQV. SinceU andV are orthogonal, we have that
R 0asR = 0, andQ is invertible withQTE - 0 asq is invertible withQ” E > 0. This shows
that(E, A) is again DH. O

We note that in the Lemm?@, the orthogonality of the transformation matfixis indeed needed
to preserve the symmetry structures/imand R, which are not preserved under general equivalence
transformations.

3. REFORMULATION OF THE NEAREST STABLE MATRIX PAIR PROBLEM

In this section, we exploit the results obtained in the presisection and derive a reformulation of
the nearest stable matrix pair problem. By Theorkrthe sefS of all asymptotically stable matrix
pairs can be expressed as the set of all DH matrix pairs witftipe definite dissipation, i. e.,

S={(E,(J-R)Q) eR"™ xR : JI' =—J, R0, Qinvertible stQ"E = 0} =: S;,.

This characterization changes the feasible set and alsobfleetive function in the nearest stable
matrix pair problem as

inf {|E— M|+ |4A— X2} = inf E—M|%+|A—(J - R)Q|A).
(MXES{II I+ 1 =} (M,(J_m)es,;g,{” 7+ 14— ( QI =}

We have demonstrated in Examplehat the sef of all stable matrix pairs is neither open nor
closed and clearly the alternative characterizatiof inf terms ofS7,%, does not change this, since

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
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COMPUTING NEAREST STABLE MATRIX PAIRS 9

S35, is not closed due to the constraint that- 0 and Q is invertible, and not open due to the
constraint)” E > 0. However, we can instead look at the §&f, containing all pairs of the form
(E,(J — R)Q) with JT = —J, R = 0 (R can be singular), an@ (Q can be singular) such that
ETQ =0,i.e.

s ={(E,(J-RQ)eR™ xR™ : J' = —J R~0, Q"E = 0}.
ThenS%), is the closuré, of S79,. Following the arguments similar to that of Lemave also
have thaS%), is invariant under orthogonal transformations and, furtiare, we have that

inf E—M|%+|A-(J - RQ|>
oro B o 1B = MG+ 114 (U = RIQIE)
_ inf  A{IIE - M[L+ A= (J - R)QIF}- (16)

(M,(J-R)Q)€S5Y

Note, however, that the s@ﬁ’q is not bounded, and hence the infimum in the right hand sidegf (
may not be attained.
Our observations lead to the following reformulation of tiearest stable matrix pair problem.

Theorem 5
Let(E, A) € R™"™ x R™"™. Then

inf {||E—M|%+||A-X|%} = inf E—M|%+A-(J = R)Q|>).
(M,X)ES{H I+l IF} (M,(.pR)Q)esg;{” P+ 14— )QIIF}

(17)

For the standard system (whéhnis the identity matrix in {)) stability solely depends on the
eigenvalues of the matrid. Thus makingA stable without perturbing the identity matrix gives an
upper bound for the distance @f,, A) to the nearest stable matrix pair. This also follows frdrm) (
because

inf A - M[E+ A= (T-RQIEI <  inf  {A=(J - R)QIF}
(M,(J-R)Q)eSTY, (In,(J-R)Q)ESH
(18)

We note that the infimum on the right hand side Df)(is the distance ofi from the set of stable
matrices 12]. We will demonstrate in our numerical experiments thateggsected) the inequality
in (18) is strict. However, it is interesting to note thatif*, R*, Q*) is a stationary point of the right
hand side of 18) then(Z,,, J*, R*,Q*) is a stationary point of the left hand side dfg}; see the
discussion in Sectioa.

A DAE with coefficient pair(E, A) and nonsingula can be equivalently reformulated as a
standard systeni,,, AE~!), and then stability can be determined by the eigenvalue$fmof!.
Thus again makingl E~! stable, or equivalently[,,, AE~!) stable without perturbing the identity
matrix, gives an upper bound for the distancg Bf A) to the nearest stable matrix pair. Indeed,
w.l.o.g. if we scal€ E, A) so that| E|| . = 1, then

inf  {|E-M|%+ A~ (- RQIE)
(M,(J-R)Q)€S5,
< it A{JA- (- RQI)
(E,(J-R)Q)eS5Y,
= inf  {J|A-(J - R)PE|[3} (19)
(In,(J—R)P)eS5Y,
< inf {|AE~" — (J = R)P|| 3.}, (20)

=0
(I.,(J—R)P)esZY,

where (L9) follows by first using the fact th&®” E = E7Q > 0impliesthatE—"Q” = QE~! > 0,
whereas in £0) we use the sub-multiplicativity of the Frobenius norm al| . = 1. Thus, for
nonsingularE, an upper bound can be computed by the reduction to a stasgstein. However,
the reduction process may be numerically unstable. Hehiseadvisable to work directly with the
pair (E, A) even for regular matrix pairs with invertible.
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10 N. GILLIS, V. MEHRMANN, P. SHARMA

4. ALGORITHMIC SOLUTION TO THE NEAREST STABLE MATRIX PAIR PRBLEM

In this section, we propose an algorithm to solve the neatable matrix pair problem using the
reformulation of Theorer, i. e., to solve

. 2 2
e d o B = MG+ A= (= R)QI). (21)

One of the first algorithms that comes to mind to sol##) (s a block-coordinate descent (BCD)
method (see for exampl@9]) with three blocks of variableéJ, R), Q@ and M. In this case the
subproblems for each of the three blocks are convex whentttersoare fixed (these are least-
squares problems with linear or positive semidefinite qaings). However, we have observed that
this method is not very efficient in practice, since conveogeis slow when one gets close to a
stationary point. Moreover, the BCD method can get easilgksin saddle points. In particular,
consider a matrix pair of the forg7,,, A) and let(J, R, Q) be a fixpoint of the BCD method (with
two blocks of variable$J, R) andQ) for the nearest stable matrix problem

i A—(J - 2}
oy A= (T = BRI}
Then(,, J, R, Q) is a fixpoint of the BCD method (with three blocks of variabldsR), @ and M)
for (21). By construction, then the update @f, R) and@ cannot be improved fodM = I,, fixed,
while M = I,, is optimal, since it is feasible and minimizgs/ — I, || . This behavior of the BCD
method is illustrated in the following example.

Example 3
Consider a matrix paifE, A), where

0
1 and E=1,,
1
with eigenvalues, 1 + /2i. The representatiofV, R, Q, I,,) with
0
J=|-1 0 1|,R=0,Q=1I, andM = I,
0

is a fixpoint of the BCD method fo2(l) with error||A — (J — R)Q||fP = 3 and we strongly believe
that(J — R)Q is the nearest stable matrix to

Using our fast projected gradient method that will be introeld below, initialized with this
solution, we obtain a nearest stable matrix pair with muefelodistance

|4~ (J = RQIE + M — L]|% = 1.536.

One possible reason why the formulati@i) does not seem to lead to good solutions is that the
constraint)” M > 0 couples the variableg and )/ rather strongly. This motivated us to introduce
a further reformulation of{1), where the feasible set is free of any constraint that ire@toupling
of some of its variables and onto which it is easy to project.

4.1. Reformulation of21)

The formulation 21) is not convenient for standard optimization schemes, @l projected
gradient method, because the feasible set is highly nowesowith the constraint€)? M = 0,
and this constraint seems to prevent standard optimizatibames to converge to good solutions,
as demonstrated in Example To overcome this dilemma we introduce a new varialilesuch
that H = Q"M = MTQ = 0 in (21), which corresponds to the Hamiltonian for port-Hamiltmi

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
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descriptor systems, seé][ This results in the following optimization problem with a dified
feasible set and objective function

inf A—(J-RQI>+|E-Q TH|?. 22
J:fJT,RtO,lCIQlinvertibe,HtO || ( >QHF + H Q ”F ( )
Note that the values of the infimum i2%) and @2) coincide. In fact,(M, J, R, Q), whereQ is
invertible is a solution forZ1) with the optimal value: if and only if (H = Q7 M, J, R, Q), where
Q is invertible is a solution forZ2) with the optimal valueg.. This implies that the infimum in2Q)
is given by , ,
inf A—-(J—-R E—- M| %. 23
J=—JT R>0,Q i}nr\l/ertibe,l\/l,QTMt() ” ( )QHF + H ”F (23)
Furthermore, the closeness of the S%B{ implies that £3) coincides with 21). The feasible set
of (22) is rather simple, with no coupling of the variables, and itdlatively easy to project onto it.

Asymptotically stable DH pair If one want to obtain a DH pair witld) invertible andR > 0

so that(M, (J — R)Q) is regular, asymptotically stable and of index at most oae, Eheorem,
then the constraint® = 0 and H = 0 can be replaced witl® > 61,, andH > 61,, for some small
parameteis > 0 that preventsk and H = QT M from being singular. As a consequence thgn
will be invertible, since otherwis€@ 7 H is unbounded. Numerically, it does not make the problem
much different, the projection is still rather straightfard.

The eigenvalues of the regular DH p4&iE, (J — R)Q) can be highly sensitive to small
perturbations. This happens if the finite or infinite eigénga are multiple and defective or if
they are close to being multiple and the eigenvectors hawveadl angle. In fact, let be a simple
eigenvalue of £, (J — R)R) and letxz be the corresponding eigenvector normalized to unit norm.
By (8) we have
2*QTRQux

2*QTEx ’

which implies that — Re (A), z) is an eigenvalue/eigenvector pair of the symmetric pefici) :=
2QTE — QTRQ, sinceQTE = 0 and QT RQ = 0. Then, see e. g2p], the normwise condition
number of\ of L(z) is given by

Re(\) = —

14+ |Re(A
w(-Re(v), 1) = L

which implies that

_ 7QTRQz _ #*Q"RQx
Re(N) =~ 5TFr =TT Re()] "

(—~Re(\), L). (24)

Therefore, if x(—Re(\), L) is large, then a small perturbation can significantly pértthre
eigenvalues of £, (J — R)Q). This is illustrated in the following example.

Example 4
Consider the matrix paifls, (J — R)Q), where

0 1.5678  —19.1822 0.1298 —0.3483 1.5035
J= | —1.5678 0 246845 |, R=| —03483 1.1029 —4.0857
19.1822 —24.6845 0 1.5035 —4.0857 17.4335

30.5907 —7.7841 —4.0069
Q= | —7.7841 33.9623  7.1589
—4.0069  7.1589 1.7035

This is an asymptotically stable DH matrix pair with threenple eigenvalues\; = —3.0083,
A2 = —1.0011, andX3 = —1.9905. The corresponding eigenvectors afe= [—0.0889, 0.1783, —

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
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12 N. GILLIS, V. MEHRMANN, P. SHARMA

0.9799]7, 2o = [-0.0738, 0.1921, — 0.9786], andz3 = [-0.1091, 0.1633, — 0.9805]%. Clearly,
the eigenvectors are far away from being orthogonal andititicates that the eigenvalues are
sensitive. In fact, if we perturb the matri¥ — R)Q with the perturbation

o 0.0465 —0.0930 0.5115
A=(J-RQ=10"%| —0.0560 0.1120 —0.6160 |,
—0.0145  0.0290 —0.1595

then the perturbed paifls, (J — R)Q — A) has eigenvalues-2.3230 + 0.6122¢ and —1.3539.
The eigenvalue condition numbers of pendi(z) = Q7 — QTRQ are k(—\1, L) = 949.4,
#k(—Xa, L) = 1262.4, andrk(—\3, L) = 85.5.

In view of (24), the constraint® = 61,, and H = 61, will assure that every finite eigenvalue
of the DH pair(M, (J — R)(Q) satisfies

:L'*QTRQ:L'

5(Umin(Q))2
*ml{(*RG(}\),L)< _—

Re (A) = =TT Re ()|

/{(7 Re (A)a L)a
where x(—Re (), L) is the condition number of- Re (A\) being a simple eigenvalue of the
symmetric pencilL(z) = 2QT M — QT RQ, ando .., (Q) is the smallest singular value .

In practice, the user can increase the paramefmogressively (e. g., restarting the algorithm
with the previous solution, increasiry in order to control the largest real part of the eigenvalues
of (E,(J — R)Q); see Remark for a numerical example.

4.2. Fast projected gradient algorithm

Following the spirit of [L2], we use a fast projected gradient algorithm to soR#® (lespite the fact
thatitis a non-convex problem. The only non-trivial pariritplementing this method is to compute
the gradient of the objective function with respecttoWe show in AppendiA that

SVl R.QH) = (7~ R (T~ RIQ — A) + Q TH(E ~ HQ ™)@,

wheref(J,R,Q, H) :=||[A— (J — R)anp +||E — Q—THH?. A pseudocode for our fast projected
gradient methods is presented in Algoritim

Initialization To initialize the fast projected gradient approach we usendas strategy as in the
matrix case, se€elp]. For @ = I,,, the optimal solutions fog, R and H in (22) can be computed
easily, and are given by

—A— AT

Ji,RP>< .

) JH=7P- (E"),
whereP- is the projection onto the set of positive semidefinite ncasi

Because of the non-convex nature of the problem, the solotitained by our algorithm is highly
sensitive to the initial point. We observed that the abovtainpoint provides in general good
solutions. Future work will require the development or msoghisticated initialization schemes
and possibly globalization approaches to obtain betteitisols; see also Remagifor a discussion.

Line-search For @ fixed, the Lipschitz constant of the gradient piwith respect toH (resp.
(J,R)) is given byL = Auin(QQT) ™" (resp.L = Aunax(QQT)), WhereAuin(X) (resp.Amax(X))
denotes the smallest (resp. largest) eigenvalue of mairiHence, performing a gradient step
with step lengthy = 1 in the variableH (resp.(J, R)) will guarantee the decrease of the objective
function.In fact, for a convex optimization problem, using the stee $j L guarantees the objective
function to decrease, whefeis the Lipschitz constant of the gradient of the objectivection, see,

e. g., R3. For this reason, and since we initialize with= I,,, we choose an initial step length of

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
Prepared usingilaauth.cls DOI: 10.1002/nla



COMPUTING NEAREST STABLE MATRIX PAIRS 13

Algorithm 1 Fast Gradient Method (FGMRB, p.90]

Require: The (non-convex) functiorf(x), an initial guess: € X', a number of iteration&
Ensure: An approximate solutior ~ argmin_ ., f(2).

1. a1 € (0,1); y = x; initial step lengthy = v > 0.
2. fork=1:Kdo

3 T =x. % Keep the previous iterate in memory.

4: x="Px(y—7Vf(y)). %Py isthe projection on¥

5: while f(z) > f(z) andy >~ do

6: Reducey. B

L€ x=Px(y—7Vfy)):

8: end while

9: if v <~ then

10: Restart fast gradienti = =; as, = a0} v = 7o.

11: else

12: y=x+ B (x—=), where B, = Z?fi%ff with ajps >0 st af,; = (1—
Qpy1)03.

13: end if

14: Increasey.

15: end for

¥ = Amin(QQT) ™1 = A\uin(I,,)~* = 1. If it does not lead to a decrease of the objective function,
then we decreasg by a constant factor (we used 2/3). This is a standard baxtkirg line-search
strategy. If no decrease of the objective function is pdssibe. if the step length is smaller than
some threshold,, then we restart the fast gradient scheme with a standadiegtastep, which
guarantees convergence. At the next step, we use a slighgigristep length than the previous step
to avoid the step length to go to zero, e. g. by multiplyinigy a constant factor; we used 2.

Convergence Algorithm 1is guaranteed to decrease the objective function valuehigitmounded
below (as we restart FGM when decrease is not achieved;egé 8}, hence the objective function
values converge. For every iterdté R, @, H), we have

1A= (J = R)Q|%+ |E - Q TH|} < fo,

wheref, is the initial value of the objective function 02%). This implies that every iterate is such
that(J — R)Q andQ~T H are in a bounded set hence there exists a subsequencetefitanah that
(J — R)Q andQ~T H converge to some limit point. Recall thdtis approximated by.J — R)Q
and E by Q—7H so there will be a converging subsequence for the approamaf the matrix
pair (E, A). Moreover, every iterate is stable since it is in DH form (@feam 1). However, it is
more difficult to prove convergence of the sequence of #srak, R, ), H), because the feasible
set is not bounded. A simple way to fix this is to constrain thgablesX = (J, R, Q, H) to be
bounded, e. gJ| X|||» < C for some sufficiently large consta@t and modify the projection steps
accordingly. However, we have not observed that this wassureiin our numerical experiments
so we have not added such a safety procedure in our algofhmiding a rigorous convergence
proof of the iterates generated by Algoritlnis nontrivial, and is out of the scope of this paper.

5. NUMERICAL EXAMPLES

The numerical examples presented below can be directlyroim the online code available from
https://sites.google.con site/nicolasgillis/. The algorithm runs inO(n?)
operations, including projections on the set of positivaisiefinite matrices, inversion of the matrix
Q@ and all necessary matrix-matrix products. Our algorithm lse applied on a standard desktop

Copyright© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra App(2010)
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computer withn up to a thousand. As far as we know, no other algorithm has pesgrosed for the
computation of the nearest stable matrix pair. Therefoee¢cannot compare to an existing method,
so for illustration of our results we will only compare ousfaradient method with the projected
gradient method (GM), which is simply FGM where restart isdiat every stefAlthough it will not

be surprising that FGM converges significantly faster thih ®e believe it is interesting to validate
this behavior as it is not supported by a theoretical reauté non-convex case. For simplicity, we
limit the CPU time to 10 seconds for all experiments. Howgwvepractice, we recommend to stop
the algorithm when the objective function values stagnateigor when the iteratéd, R, Q, H) do
not change much between several iterations.

5.1. Case 1(I,,A)

Let us take asd the Grcar matrix from12] and £ = I,,. The Grcar matrix of ordek is a banded
Toeplitz matrix with its subdiagonal set tel, and both its main and superdiagonals set to 1.

We usen = 20 andk = 3. The nearest stable matrikto A found in [L2] satisfies|| A — AH?, =
23.51. Figurel shows the evolution of the objective function aflf. Our FGM achieves a objective
function valug|A — (J — R)Q|[3 + || E — Q—TH||§ = 6.28. Note that FGM converges much faster
than GM.

30 ! ! ! ! 7
' h
H 6.9r! —GM for DH pair
au 25 S NI, , - - -FGM for DH pair
¥ ' v
= 2 67}
+ 20§ + !
N§ ' - =FGM for DH matrix N§ 6.6r!
x ' —— GM for DH pair 2 |
& 155 - - - FGM for DH pair & 85
< | < 64
100} )
! 63F ..
--------------------- L L 6.2 L L L L
0 2 4 6 8 10 0 2 4 6 8 10
Time (s.) Time (s.)

Figure 1. Evolution of the objective function for FGM and Glgr the matrix pair(Z,,, A) where A is a
20 x 20 Grecar matrix of ordeB. The right figure is a zoom of the left figure and shows the fastergence
of FGM compared to GM.

5.2. Case 2: Random and rank-deficienty

In our second example, we generate each entry asing the normal distribution of mednand
standard deviatiom (r andn( n) in Matlab). We generat®& so as it has rank, by takingE as the
best rank- approximation of a matrix generated randomly in the same agy. We usen = 20
andr = 3.

For these types of matrices, usually the algorithm conwetgea rank-deficient solution, i. e.
R, H, Q are not of full rank, hence it is useful to use the lower bowrdlie eigenvalues to obtain
better numerical stability; we use= 106,

Figure2 shows the evolution of the objective function &flj for a particular example. On all the
examples that we have run, FGM always converged much fastigenerated a significantly better
solution than GM, similarly as shown on Figute

5.3. Case 3: Mass-spring-damper model

Let us consider a lumped parameter, mass-spring-dampeandgal system, see, e. g2g with
n point masses and spring-damper pairs. The equations of motion can be writighe form of
second order system of differential equations as

Mii+ Di+ Ku = f, (25)
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Figure 2. Evolution of the objective function for the diféeit algorithms for matrix paifF, A) where A is
Gaussian and is the best rank-approximation of a Gaussian matrix,= 20 andr = 3.

whereM = 0 is the mass matrix = 0 is the damping matrix an&™ - 0 is the stiffness matrix,
f,u, 4,1 are the forces, displacement, velocity and acceleratiotovg respectively.
An appropriate first order formulation a2%) is associated with the DH penciE — A, where

M 0 0o -I, | D 0 | I, 0
E[ 0 I,L]’A(‘]P”)Q’J{In 0 ]’R[ 0 o}’Q{ 0 K]
(26)
SinceF is invertible, the paifE, A) is regular and of index zero, and thus from Theorkis also
stable. In order to make the pair unstable, we perturb thepdison matrix to become indefinite via
D 0
R = { 0 —el, ] ‘

We usen = 10 ande = 0.1 which moves some eigenvalues to the open right half of thepbexn
plane (see Figuré below).

The corresponding mass vectar containing the point masses, spring vedtortontaining the
spring constants, and damping vect@ontaining the damping constants are all equal to the vector

m=c=k=[1 23 45 6 7 8 9 10 ].

Figure 3 shows the evolution of the objective functio®?f. We used the initialization from26),

i. e. we used the trud, R and@ from the known stable system to see whether an approximation
better than the original stable pencil can be found. (Not ifwe use our standard initialization,
see Sectiod.2, FGM converges to another local minimum with higher appraation error32.70.)

We observe that FGM converges much faster than GM, as in thetier examples, while it is
able to generate a better approximation than the FGM fristhgpplied on the nearest stable matrix
problem(I, E~'A), as already noted in Sectiénl. We also observe that the algorithms are able,
rather surprisingly, to significantly reduce the value & tibjective compared to the initialization
(which is the original stable pencil), froei.97 to 6.53 for FGM (DH matrix), to12.70 for GM (DH
pair), and tot.09 for FGM (DH pair). Figure4 shows the location of the eigenvalues of the pencils
(E, A) generated by the FGM using a DH matrix and a DH pair, as wehase of the original and
perturbed pencils.

Remark 1
In the mass-spring-damper example, we did not impose a lbagnd of the eigenvalues & and
MTQ. Let us rerun this experiment with different valuessofWe initialize Algorithm1 with the
solution obtained with the previous valuesiaind run it with a time limit of 20 seconds.

Tablel summarizes the result (note that the errordfet 0 is smaller than in the result presented
above because we run Algorithtrfor 20 more seconds).
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Figure 3. Evolution of the objective function for the diféeit algorithms for matrix paitFE, A) for the
perturbed mass-spring-damper system.
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Figure 4. Eigenvalues of various pencils correspondingpeatass-spring-damper system.

Table I. Largest real part of the eigenvalueg &f, (J — R)Q) and error of the approximation depending on
the value of the parametérwhereR > 67 andH = 41 is imposed in22).

0 0 1076 1073 1072 0.1 0.2 0.5
max;(Re()\;) | -1.3107° | -1.5107° | -0.0021]| -0.0028]| -0.017 | -0.047 | -0.17
Error 3.69 3.69 3.76 4.46 433 | 4.78 | 4.28

As discussed at the end of Sectibi, the largest real part of the eigenvalueg df, (J — R)Q)
decreases asincreases. Note however that the error does not necesdadhgase although the
problem is more constrained asncreases. This is explained by the difficulty (non-cont@xof
the problem: the algorithm converged to another local mimmescaping the previous one with a
smaller value of that did not satisfy the tighter constraints.

For example, if we initialize the problem for= 0.2 with the solutions = 0.5, we will obtain a
better solution than the one from Tablén fact, it is able to converge to a much better solution with
error 2.61 withmax;(Re(\; (M, (J — R)Q) = —0.05. If we now initialize the problem fo¥ =0
with this solution, we obtain an error of 2.46, andx;(Re(\; (M, (J — R)Q) = —7.81075. This
illustrates the sensitivity of Algorithm to initialization. Moreover, it shows that playing around
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with the parametef actually would be a good strategy to escape local minimas Bha topic for
further investigation.

Remark 2

As mentioned in Sectiort.2, Algorithm 1 is sensitive to initialization and designing more
sophisticated schemes is a topic for further researchldstisite this fact, we use the mass-spring-
damper example with random initializations: each entry oR, Q and H are generated using the
normal distribution of mean 0 and standard deviation 1, aadhen projected onto the feasible set.
Using 100 such initializations, the average error is 20v@#) standard deviation 12.70. The best
solution obtained has error 7.64, and the worst has erra620Fence, the best error is better than
our standard initialization (with error 32.70) but worsartthe true initialization (with error 4.09).
This shows that random initialization can sometimes be tuliseategy, and perform better than the
standard initialization (90% of the solutions generatethwhe random initialization had a smaller
error). However, in some other examples (e. g., the Grcarixndg¢scribed above), it performed
much worse. This is a topic for further research.

CONCLUSIONS

We have considered the problem of computing the nearedestaditrix pair to a given unstable
one. We have presented a new characterization of the sesldegnatrix pairs using DH matrix
pairs, defined aéF, (J — R)Q) whereJ = —JT, R = 0, andQ” E = 0 with Q invertible. This has
allowed us to reformulate the nearest stable matrix pablpra in a more convenient way for which
we develop an efficient fast gradient method.

Possible future works include the development of more stighited ways to solve2p), apply
globalization approaches to obtain better soluticars] to study other applications of the DH
characterization of a stable matrix pair.
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A. GRADIENT OF f WITH RESPECT TQQ
In this section, we explain how to compute the gradient of
FULRQ H) = SIA~ (7~ RIQIE + 5I1E ~ QT HI.
with respect ta, denoted by f(Q). For the first term, we have
Vazlld— (7~ RIQIE = ~(/ ~ B)' (A~ (7 - R)Q).

For the second term, we need to compWtg||E — Q*THH; Using the basic rules for matrix
differentiation, see e. glf, 24],

() Linear:
Vxtr(WX)=W" Vxtr(WX")=A
(i) Product:
Vx tr (G(X)F(X)) = Vx tr (F(Y)G(X) + F(X)G(Y))|y=x-
(i) Inverse:

Vxtr (WFH(X)) =-Vxtr (F ' (Y)WF (Y)F(X))|y=x,

we obtain (considering the transpose mafiix — HQ '),

Vol BT — HQ '} = Vo tr (B” — HQ )T (ET — HQ ™)) = Vo tr(Q THTHQ ™) — 2t2(FHQ™

Using (i) with F(Q) = HQ~! andG(Q) = F(Q)*, we get for the first term
Vo tr(G(Q)F(Q)) = Vo tr(F(Y)G(Q) + F(Q)G(Y))ly=¢
= Vo tr(F(Y)F(@Q)" + F(QF(Y)")ly=¢
=2V tr(F(Q)F(Y)")ly=¢
ZQVQU'(HQ 1Y THT)|Y Q-
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Using (i) again, now withG(Q) = HQ ! andF(Q) = YT H” which is a constant, we obtain
Votr(HQ 'Y THY) =Votr(Y THTHQ ' + Y TH HY ') = Vo tr(Y THTH)Q™),
using (i), W = Y"THTH, and (i),

Votr(Y TH'TH)Q Nly=¢ = —(Q'Q"TH"HQ™")" = —Q " "H"HQ™'Q™".
For the second term we use (iii) and obtain

Votr(EHQ ™) = —(Q'EHQ™ )T = Q" THTETQ 7.
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