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SUMMARY

In this paper, we study the nearest stable matrix pair problem: given a square matrix pair(E,A), minimize
the Frobenius norm of(∆E ,∆A) such that(E +∆E , A+∆A) is a stable matrix pair. We propose a
reformulation of the problem with a simpler feasible set by introducing dissipative Hamiltonian (DH) matrix
pairs: A matrix pair(E,A) is DH if A = (J −R)Q with skew-symmetricJ , positive semidefiniteR, and
an invertibleQ such thatQTE is positive semidefinite. This reformulation has a convex feasible domain
onto which it is easy to project. This allows us to employ a fast gradient method to obtain a nearby stable
approximation of a given matrix pair. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study the stability and instability under perturbationsfor systems of linear time-invariant
differential-algebraic equations (DAEs) of the form

Eẋ = Ax+ f, (1)

on the unbounded intervalI = [t0,∞), whereE,A ∈ R
n,n andf ∈ C(I,Rn) is sufficiently smooth.

HereRn,n denotes the realn× n matrices andC(I,Rn) denotes the set of all continuous functions
from I toRn. Systems of the form (1) arise from linearization around stationary solutions of initial
value problems for general implicit systems of DAEs

F (t, x, ẋ) = 0, (2)

with an initial condition
x(t0) = x0, (3)

where we assume thatF ∈ C(I×Dx ×Dẋ,R
n) is sufficiently smooth andDx,Dẋ ⊆ Rn are open

sets [16].
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2 N. GILLIS, V. MEHRMANN, P. SHARMA

To characterize regularity and stability for the linear constant coefficient case we introduce
the following notation. A square matrix pair(E,A) with E,A ∈ Rn,n is called regular if the
matrix pencilzE −A is regular, i. e. ifdet(λE −A) 6= 0 for someλ ∈ C, otherwise it is called
singular. For a regular matrix pair(E,A), the roots of the polynomialdet(zE −A) are calledfinite
eigenvaluesof the pencilzE −A or of the pair(E,A), i. e. λ ∈ C is a finite eigenvalue of the
pencil zE −A if there exists a vectorx ∈ Cn \ {0} such that(λE −A)x = 0, andx is called an
eigenvectorof zE −A corresponding to the eigenvalueλ. A regular pencilzE −A has∞ as an
eigenvalueif E is singular.

Any regular matrixpair (E,A) (with E,A ∈ R
n,n) can be transformed toWeierstraß canonical

form [11], i. e. there exist nonsingular matricesW,T ∈ Cn,n such that

E = W

[
Iq 0
0 N

]
T and A = W

[
J 0
0 In−q

]
T,

whereJ ∈ C
q,q is a matrix inJordan canonical formassociated with theq finite eigenvalues of the

pencilzE −A andN ∈ Cn−q,n−q is a nilpotent matrix in Jordan canonical form corresponding to
n− q times the eigenvalue∞. If q < n andN has degree of nilpotencyν ∈ {1, 2, . . .}, i. e.Nν = 0
andN i 6= 0 for i = 1, . . . , ν − 1, thenν is called theindex of the pair(E,A). If E is nonsingular,
then by convention the index isν = 0. A pencil zE −A is of index at most one if it is regular
with exactlyr := rank(E) finite eigenvalues, see e. g. [22, 27]. In this case then− r copies of the
eigenvalue∞ are semisimple (non-defective).

The literature on (asymptotic) stability of constant coefficient DAEs is very ambiguous, see e. g.
[4, 8, 27], and the review in [10]. This ambiguity arises from the fact that some authors consider
only the finite eigenvalues in the stability analysis and allow the index of the pencil(E,A) to be
arbitrary, others consider regular high index pencilszE −A as unstable by considering∞ to be on
the imaginary axis. We make the following definition.

Definition 1
Consider the initial value problem (1).

i) The linear DAE (1) is regular if the matrix pair(E,A) is regular [16].
ii) If the pair (E,A) is regular and of index at most one, then the initial value problem (1) & (3)

with a consistent initial valuex0 is stableif all the finite eigenvalues ofzE −A are in the
closed left half of the complex plane and those on the imaginary axis are semisimple [8, 10].
In this case(E,A) is called a stable matrix pair.

iii) If the pair (E,A) is regular and of index at most one, then the initial value problem (1) &
(3) with a consistent initial valuex0 is asymptotically stableif all the finite eigenvalues of
zE −A are in the open left half of the complex plane [8, 10]. In this case(E,A) is called a
asymptotically stable matrix pair.

In this paper, we are interested in the problem of finding minimal perturbations to the system
matricesE +∆E andA+∆A of an unstable DAE (1) that puts the system on the boundary of the
stability region. This problem is closely related to the classical state-feedback-stabilization problem
in descriptor control problems withf = Bu for some control functionu, see e. g. [3, 9, 22], where
one chooses feedbacksu = Kx so that the closed-loop descriptor system

Eẋ = (A+BK)x

is asymptotically stable. However, the perturbations are restricted only inA while in derivative
feedback one also allows feedbacksE +BG, see [5, 6]. Instead of the feedback stabilization
problem, we extend the nearest stable matrix problem of [12, 25] to matrix pencils and we study the
following problem.

Problem
For a given pair(E,A) ∈ Rn,n ×Rn,n find the nearest asymptotically stable matrix pair(M,X).
More precisely, letS be the set of matrix pairs(M,X) ∈ Rn,n ×Rn,n that are regular, of index at

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
Prepared usingnlaauth.cls DOI: 10.1002/nla



COMPUTING NEAREST STABLE MATRIX PAIRS 3

most one, and have all finite eigenvalues in the open left halfplane, then we wish to compute

inf
(M,X)∈S

{‖E −M‖2F + ‖A−X‖2F },

where‖ · ‖F stands for the Frobenius norm of a matrix.

In the following we usenearest stable matrix pair problemto refer to the above problem. This
problem is the complementary problem to the distance to instability for matrix pairs, see [8] for
complex pairs, and [10] for a survey on this problem. Since we require a stable pair to be regular it
is also complementary to the distance to the nearest singular pencil, which is a long-standing open
problem [7, 14, 21].

The nearest stable matrix pair problem occurs in system identification where one needs to identify
a stable matrix pair depending on observations, similar to the nearest stable matrix problem [12, 25].
For example, when a real-world problem is approximated by a system model (1), the stability of the
physical system may not be preserved, i. e., the approximation process (for example, finite element
or finite difference models, linearization, or model order reduction) may make the stable system
unstable. The unstable system then has to be approximated bya nearby stable system by perturbing
E andA.

For ordinary differential equations, i. e. whenE = In, stability solely depends on the eigenvalues
of the matrixA. Recently, in [12] a new algorithm was proposed to compute a nearby stable
perturbation to a given unstable matrix by reformulating this highly nonconvex problem into
an equivalent optimization problem with a convex feasible region. This reformulation uses the
fact that the set of stable matrices can be characterized as the set ofdissipative Hamiltonian
(DH) matrices. We recall from [12] that a matrixA ∈ Rn,n is called a DH matrix ifA can be
factored asA = (J −R)Q for someJ,R,Q ∈ Rn,n such thatJT = −J ,R = R � 0, i. e. is positive
semidefinite, andQ = QT � 0, i. e. is positive definite. In this wayA is stable if and only ifA is a
DH matrix, see also [1, 19, 20].

In this paper we extend the ideas of [12] from the matrix case to the pencil case and discuss the
problem of computing the nearest stable matrix pair. This isa challenging problem, since the setS

of all stable matrix pairs is neither open nor closed with respect to the usual norm topology as the
following example demonstrates.

Example 1
Consider the matrix pair

(E,A) =






1 0 0
0 0 0
0 0 0


 ,




−1 0 2
0 1 0
0 0 1




 .

It is easy to check that(E,A) is regular, of index one, and asymptotically stable with theonly finite
eigenvalueλ1 = −1, and thus(E,A) ∈ S. Consider the perturbations(∆E ,∆A), where

∆E =




ε1 0 0
0 ε2 ε3
0 0 0


 and ∆A =




δ 0 0
0 0 0
0 0 0


 ,

and the perturbed pair(E +∆E , A+∆A). If we letδ = ε1 = ε2 = 0 andε3 > 0, then the perturbed
pair is still regular and all finite eigenvalues are in open left half plane, but it is of index two. If we
let δ = ε1 = ε3 = 0 andε2 > 0, then the perturbed pair is regular and index one, but has twofinite
eigenvaluesλ1 = −1 andλ2 = 1/ε2 > 0, and thus is not stable. This shows thatS is not open. If we
let ε1 = −δ, ε2 = ε3 = 0, then asδ → 1 the perturbed pair becomes non-regular. This shows thatS

is not closed.

It is also clear that the setS is highly nonconvex, see [25], and thus it is very difficult to find
a globally optimal solution of the nearest stable matrix pair problem. To address this challenge,
we follow the strategy suggested in [12] for matrices and reformulate the problem of computing the
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4 N. GILLIS, V. MEHRMANN, P. SHARMA

nearest stable matrix pair by extending the concept of dissipative Hamiltonian matrices todissipative
Hamiltonian matrix pairs (DH pairs). The DH parametrization/representation of a stable LTI system
can be useful in other applications. Some of these applications include analysis of disk brake
squeal [19, Example 1.1], mass-spring-damper dynamical systems [20, Example 4.1], and circuit
simulation and power system modeling [19, Example 1.2], where one is interested in knowing the
stability or instability under the perturbation of one (or more) of the matricesE, J , R, andQ. In
such DH models of physical systems the matrixR describes the damping effects in the system and
thus perturbing onlyR is of particular interest. However, in this paper we focus onthe nearest stable
pair as the main application, as it is the problem that drove our work.

The paper is organized as follows. In Section 2, we introduceand study DH matrix pairs. We
provide several theoretical results and characterize the set of asymptotically stable matrix pairs in
terms of DH matrix pairs. A reformulation of the nearest stable matrix pair problem using the DH
characterization is obtained in Section 3. In Section 4, we propose a fast gradient method to solve
the reformulated optimization problem. The effectivenessof the proposed algorithm is illustrated
by several numerical examples in Section 5.

In the following, byiR, we denote the imaginary axis of the complex plane, byIn the identity
matrix of sizen× n, and bynull(E) the nullspace of a matrixE.

2. DISSIPATIVE HAMILTONIAN MATRIX PAIRS

In this section, we construct the setup to approach the nearest stable matrix pair problem. As
demonstrated in Example1, the feasible setS is not open, not closed, non-bounded, and highly
nonconvex, thus it is very difficult to work directly with thesetS. For this reason we reformulate the
nearest stable matrix pair problem into an equivalent optimization problem with a simpler feasible
set. For this, we extend the idea of a DH matrix from [12] to dissipative Hamiltonian matrix pairs.

Definition 2
A matrix pair (E,A), with E,A ∈ Rn,n, is called adissipative Hamiltonian (DH) matrix pairif
there exists an invertible matrixQ ∈ Rn,n such thatQTE = ETQ � 0, andA can be expressed as
A = (J −R)Q with JT = −J , RT = R � 0.

This definition of a DH matrix pair is a natural generalization of that of a DH matrix, because for
a standard DH matrix pair(In, A) (whenE = In), A is a DH matrix [12]. Note however, that this
definition is slightly more restrictive than that of port-Hamiltonian descriptor systems in [2], where
it is not required that the matrixQ is invertible. In the following we call the matrixR in a DH matrix
pair (E, (J −R)Q) thedissipation matrixas in the DH matrix case.

A DH-matrix pair is not necessarily regular as the followingexample shows.

Example 2
The pair(E, (J −R)Q) with

E =



1 0 0
0 1 0
0 0 0


 , J =




0 2 0
−2 0 0
0 0 0


 , R =



1 0 0
0 1 0
0 0 0


 , Q =



1 0 0
0 1 0
0 0 1


 ,

is a DH matrix pair, but(E, (J −R)Q) is singular, sincedet(zE − (J −R)Q) ≡ 0.

It is easy to see that if the matricesE andA have a common nullspace, then the pair(E,A) is
singular, but the converse is in general not true, see e. g. [7]. However, for singular DH matrix pairs,
the property thatQ is invertible guarantees that the converse also holds.

Lemma 1
Let (E, (J −R)Q) be a DH-matrix pair. Then(E, (J −R)Q) is singular if and only if

null(E) ∩ null((J −R)Q) 6= ∅.

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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Proof
The direction(⇐) is immediate. For the other direction, let(E, (J −R)Q) be singular, i. e.
det(zE − (J −R)Q) ≡ 0. Letλ ∈ C be such thatRe (λ) > 0 and letx ∈ Cn \ {0} be such that

(J −R)Qx = λEx. (4)

SinceQ is nonsingular, we have thatQx 6= 0, and we can multiply with(Qx)H from the left to
obtain

xHQTJQx− xHQTRQx = λxHQTEx, (5)

wherexH denotes the complex conjugate of a vectorx. This implies thatxHQTEx = 0, because
otherwise from (5) we would have

Re (λ) = −xHQTRQx

x∗QTEx
≤ 0,

sinceQTRQ � 0 (asR � 0), andQTE � 0. But this is a contradiction to the fact thatRe (λ) > 0.
ThereforexHQTEx = 0 and alsoQTEx = 0, and this implies thatEx = 0 asQ is invertible.
Inserting this in (4), we get(J −R)Qx = 0, i. e.0 6= x ∈ null(E) ∩ null((J −R)Q).

Lemma1 gives a necessary and sufficient condition for a DH-matrix pair to be singular. However,
if the dissipation matrixR is positive definite, then regularity is assured, as shown inthe following
corollary.

Corollary 1
Let (E, (J −R)Q) be a DH matrix pair. IfR is positive definite then the pair is regular.

Proof
By Lemma1, a necessary condition for the pencilλE − (J −R)Q to be singular is that neitherE
nor (J −R)Q is invertible. Thus the result follows immediately by the fact that ifR � 0 in a DH-
matrix pair(E, (J −R)Q), then(J −R)Q is invertible. Indeed, suppose there existsx ∈ C \ {0}
such that(J −R)Qx = 0, then we havexHQT (J −R)Qx = 0. This impliesxHQTRQx = 0, since
JT = −J . SinceQ is invertible and thusQx 6= 0, this is a contradiction to the assumption thatR is
positive definite.

In the following lemma, which is the matrix pair analogue of [12, Lemma 2], we localize the
finite eigenvalues of a DH-matrix pair.

Lemma 2
Let (E, (J −R)Q) be a regular DH-matrix pair and letL(z) := zE − (J −R)Q. Then the
following statements hold.

1) All finite eigenvalues of the pencilL(z) are in the closed left half of the complex plane.

2) The pencilL(z) has a finite eigenvalueλ on the imaginary axis if and only ifRQx = 0 for
some eigenvectorx of the pencilzE − JQ associated withλ.

Proof
Let λ ∈ C be an eigenvalue ofzE − (J −R)Q and letx ∈ Cn \ {0} be such that

(J −R)Qx = λEx. (6)

Multiplying (6) by xHQT from the left, we get

xHQT (J −R)Qx = λxHQTEx. (7)

Note thatxHQTEx 6= 0, because ifxHQTEx = 0, then we haveQTEx = 0 asQTE � 0, and
thus Ex = 0 as Q is invertible. Using this in (6), we have(J −R)Qx = 0. This implies that
x ∈ null(E) ∩ null((J −R)Q) which is, by Lemma1, a contradiction to the regularity of the pair
(E, (J −R)Q).

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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6 N. GILLIS, V. MEHRMANN, P. SHARMA

Thus, by (7) we have

Re (λ) = −xHQTRQx

xHQTEx
≤ 0, (8)

becauseQTRQ � 0 asR � 0, andxHQTEx > 0. This completes the proof of 1).
In the proof of 1), ifλ ∈ iR, then from (8) it follows that xHQTRQx = 0. This implies that

RQx = 0, sinceR � 0. Using this in (6) implies that(λE − JQ)x = 0.
Conversely, letλ ∈ iR andx ∈ Cn \ {0} be such thatRQx = 0 and(λE − JQ)x = 0. Then this

trivially implies thatλ is also an eigenvalue of the pencilλE − (J −R)Q with eigenvectorx. This
completes the proof of 2).

Making use of these preliminary results, we have the following stability characterization.

Theorem 1
Every regular DH matrix pair(E, (J −R)Q) of index at most one is stable.

Proof
In view of Lemma2, to prove the result it is sufficient to show that ifλ ∈ iR is an eigenvalue of the
pencilzE − (J −R)Q, thenλ is semisimple.

Let us suppose thatλ ∈ iR is a defective eigenvalue of the pencilzE − (J −R)Q and the set
{x0, x1, . . . , xk−1} forms a Jordan chain of lengthk associated withλ, see e. g. [13], i. e. x0 6= 0
and

(λE − (J −R)Q)x0 = 0, (λE − (J −R)Q)x1 = Ex0,

(λE − (J −R)Q)x2 = Ex1,

... (9)

(λE − (J −R)Q)xk−1 = Exk−2.

Note that by Lemma2, we have that(λE − (J −R)Q)x0 = 0 implies that

(λE − JQ)x0 = 0 and RQx0 = 0. (10)

By (9), x0 andx1 satisfy
(λE − (J −R)Q)x1 = Ex0. (11)

Multiplying (11) by xH
0 QT from the left, we obtain

xH
0 (λQTE − (QTJQ−QTRQ))x1 = xH

0 QTEx0.

This implies that

−xH
1 (λQTE −QTJQ)x0 + xH

1 QTRQx0 = xH
0 QTEx0, (12)

where the last equality follows by the fact thatQTE = ETQ, JT = −J , and RT = R. Thus,
by using (10) in (12), we getxH

0 QTEx0 = 0. But this implies thatQTEx0 = 0 as QTE � 0
and Ex0 = 0 as Q is invertible. Sincex0 is an eigenvector of the pencilzE − (J −R)Q to
λ, Ex0 = 0 implies that(J −R)Qx0 = 0. This means that0 6= x0 ∈ null(E) ∩ null((J −R)Q),
which contradicts the regularity of the pair(E, (J −R)Q). Therefore there does not exist a vector
x1 ∈ Cn satisfying (9). Henceλ is semisimple.

We note that the proofs of Lemma2 and Theorem1 highly depend on the invertibility ofQ.
In fact, we have used the fact that(QTE,QT (J −R)Q) is regular, becauseQ invertible implies
that (E, (J −R)Q) is regular if and only if(QTE,QT (J −R)Q) is regular. IfQ is a singular
matrix andQTE = ETQ � 0, then the pair(QTE,QT (J −R)Q) is always singular, but the pair
(E, (J −R)Q) may be regular.For example, consider the matrices

E =

[
1 0
0 2

]
, J =

[
0 1
−1 0

]
, R1 =

[
1 0
0 1

]
, R2 =

[
1 0
0 0

]
,
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and the singular matrixQ =

[
0 0
0 1

]
. Then the matrix pair(E, (J −R1)Q) is regular, of index

zero, and has two simple eigenvalues0 and−0.5, which implies that(E, (J −R1)Q) is stable.
On the other hand the matrix pair(E, (J −R2)Q) is regular, of index zero, and has a defective
eigenvalue of multiplicity two at the origin, which impliesthat it is not stable. This shows that the
invertibility of Q is necessary in Lemma2 and Theorem1.

However, parts of Lemma2 and Theorem1 also hold for singularQ with an extra assumption
on the eigenvectors of the pencilzE − (J −R)Q, as stated in the next result. This result is a
generalization of [12, Lemma 2] for DH matrices with singularQ.

Theorem 2
Let (E, (J −R)Q) be a regular matrix pair withJT = −J , R � 0, and a singularQ such that
ETQ � 0. If no eigenvectorx of L(z) := zE − (J −R)Q with respect to a nonzero eigenvalue
satisfiesQTEx = 0, then the following hold.

1) All finite eigenvalues of the pencilL(z) are in the left half of the complex plane.

2) L(z) has a finite eigenvalueλ on the imaginary axis if and only ifRQx = 0 for some
eigenvectorx of the pencilzE − JQ with respect to eigenvalueλ.

3) If 0 6= λ ∈ iR is an eigenvalue ofzE − (J −R)Q, thenλ is semisimple.

Note that ifE = In in Theorem2, thenQ is positive semidefinite and singular, and the extra
condition on the eigenvectors of pencilzIn − (J −R)Q (or, equivalently of matrix(J −R)Q) is
trivially satisfied. In this case Theorem2 coincides with the matrix case [12, Lemma 2].

The following result from [18] gives an equivalent condition for checking asymptotical stability
of such a pair(E,A) by using Lyapunov’s Theorem.

Theorem 3([18])
Consider a pair(E,A) with E,A ∈ R

n,n. The pair is regular, of index at most one and
asymptotically stable if and only if there exists a nonsingular V ∈ Rn,n satisfying

V TA+ATV ≺ 0 and ETV = V TE � 0. (13)

Theorem 4
Let (E,A) be a matrix pair, whereE,A ∈ Rn,n. Then the following statements are equivalent.

1) (E,A) is a DH-matrix pair with positive definite dissipation matrix.

2) (E,A) is regular, of index at most one, and asymptotically stable.

Proof
1) ⇒ 2) Let (E,A) be a DH-matrix pair with positive definite dissipation matrix, i. e.,A can be
expressed asA = (J −R)Q for someR � 0, JT = −J , and nonsingularQ with QTE � 0. Clearly,
by Corollary1 (E, (J −R)Q) is regular. Furthermore,(E, (J −R)Q) has all its finite eigenvalues
in the open left half plane. To see this, letλ ∈ C be a finite eigenvalue of the pencilzE − (J −R)Q.
Then by Lemma2 it follows thatRe (λ) ≤ 0, andRe (λ) = 0 if and only if there existsx 6= 0 such
that(λE − JQ)x = 0 and0 6= Qx ∈ null(R). But null(R) = {0} asR � 0.

To show that(E, (J −R)Q) is of index at most one, we setr := rank(E) and assume that
U ∈ Rn,n−r is an orthogonal matrix whose column spans null(E). Then, see [15], (E, (J −R)Q)
is of index at most one if and only if rank(

[
E (J −R)QU

]
) = n. Suppose thatx ∈ Cn ∈ \{0}

is such thatxH
[
E (J −R)QU

]
= 0. Then we have the two conditions

xHE = 0, xH(J −R)QU = 0. (14)

SinceQ is invertible, we havexHEQ−1 = 0 and hence(EQ−1)x = 0 becauseEQ−1 � 0 as
ETQ � 0. This shows thatQ−1x ∈ null(E), and thus there existsy ∈ Cn−r such thatQ−1x = Uy,
or, equivalentlyx = QUy. Using this in (14), we obtain thatxH(J −R)x = 0. This implies that

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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8 N. GILLIS, V. MEHRMANN, P. SHARMA

xHJx = 0 andxHRx = 0 asJ is skew-symmetric andR is symmetric. But this is a contradiction
to the assumption thatR � 0. This completes the proof of1) ⇒ 2).
2) ⇒ 1) Consider a pair(E,A), with E,A ∈ Rn,n, that is regular, asymptotically stable, and

of index at most one. Then by Theorem3, there exist an nonsingularV ∈ Rn,n such that
V TA+ATV ≺ 0 andETV = V TE � 0. Setting

Q = V, J =
(AV −1)− (AV −1)T

2
, and R = − (AV −1) + (AV −1)T

2
, (15)

we haveJT = −J , ETQ = QTE � 0, andR � 0, as V is invertible. Applying the Lyapunov
inequality

V TRV = −V T ((AV −1) + (AV −1)T )V

2
= −V TA+ATV

2
� 0,

the assertion follows.
An important consequence of the proof of Theorem4 is an explicit constructionof the DH

characterization of a matrix pair(E,A): (i) solve the system (13) (if the system does not admit
a solution, the pair is not regular, of index at most one, and asymptotically stable), and (ii) use (15)
to construct(J,R,Q).

We conclude this section with the observation that the set ofDH matrix pairs is invariant under
orthogonal transformations of the matrix pair.

Lemma 3
Let (E,A) be a DH matrix pair, and letU andV be orthogonal matrices such thatẼ = UEV and
Ã = UAV . Then(Ẽ, Ã) is a DH pair.

Proof
Since(E,A) is DH, we haveA = (J − R)Q for someJT = −J , R � 0, and invertibleQ such that
QTE � 0. Using the orthogonality ofU andV , we have

(Ẽ, Ã) = (UEV,UAV ) = (UEV,U(J −R)QV ) = (UEV,U(J −R)UTUQV )

= (UEV, (UJUT − URUT )UQV ) = (Ẽ − (J̃ − R̃)Q̃),

whereJ̃ := UJUT , R̃ := URUT , andQ̃ := UQV . SinceU andV are orthogonal, we have that
R̃ � 0 asR � 0, andQ̃ is invertible withQ̃T Ẽ � 0 asQ is invertible withQTE � 0. This shows
that(Ẽ, Ã) is again DH.

We note that in the Lemma3, the orthogonality of the transformation matrixU is indeed needed
to preserve the symmetry structures inJ andR, which are not preserved under general equivalence
transformations.

3. REFORMULATION OF THE NEAREST STABLE MATRIX PAIR PROBLEM

In this section, we exploit the results obtained in the previous section and derive a reformulation of
the nearest stable matrix pair problem. By Theorem4, the setS of all asymptotically stable matrix
pairs can be expressed as the set of all DH matrix pairs with positive definite dissipation, i. e.,

S =
{
(E, (J −R)Q) ∈ R

n,n ×R
n,n : JT = −J, R � 0, Q invertible s.t.QTE � 0

}
=: S�0

DH .

This characterization changes the feasible set and also theobjective function in the nearest stable
matrix pair problem as

inf
(M,X)∈S

{‖E −M‖2F + ‖A−X‖2F } = inf
(M,(J−R)Q)∈S

�0

DH

{‖E −M‖2F + ‖A− (J −R)Q‖2F }.

We have demonstrated in Example1 that the setS of all stable matrix pairs is neither open nor
closed and clearly the alternative characterization ofS in terms ofS�0

DH does not change this, since

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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S
�0
DH is not closed due to the constraint thatR � 0 andQ is invertible, and not open due to the

constraintQTE � 0. However, we can instead look at the setS
�0
DH containing all pairs of the form

(E, (J −R)Q) with JT = −J , R � 0 (R can be singular), andQ (Q can be singular) such that
ETQ � 0, i. e.

S
�0
DH :=

{
(E, (J −R)Q) ∈ R

n,n ×R
n,n : JT = −J, R � 0, QTE � 0

}
.

ThenS�0
DH is the closureS�0

DH of S�0
DH . Following the arguments similar to that of Lemma3 we also

have thatS�0
DH is invariant under orthogonal transformations and, furthermore, we have that

inf
(M,(J−R)Q)∈S

�0

DH

{‖E −M‖2F + ‖A− (J −R)Q‖2F }

= inf
(M,(J−R)Q)∈S

�0

DH

{‖E −M‖2F + ‖A− (J −R)Q‖2F }. (16)

Note, however, that the setS�0
DH is not bounded, and hence the infimum in the right hand side of (16)

may not be attained.
Our observations lead to the following reformulation of thenearest stable matrix pair problem.

Theorem 5
Let (E,A) ∈ Rn,n ×Rn,n. Then

inf
(M,X)∈S

{‖E −M‖2F + ‖A−X‖2F } = inf
(M,(J−R)Q)∈S

�0

DH

{‖E −M‖2F + ‖A− (J −R)Q‖2F }.

(17)

For the standard system (whenE is the identity matrix in (1)) stability solely depends on the
eigenvalues of the matrixA. Thus makingA stable without perturbing the identity matrix gives an
upper bound for the distance of(In, A) to the nearest stable matrix pair. This also follows from (17)
because

inf
(M,(J−R)Q)∈S

�0

DH

{‖In −M‖2F + ‖A− (J −R)Q‖2F } ≤ inf
(In,(J−R)Q)∈S

�0

DH

{‖A− (J −R)Q‖2F }.

(18)
We note that the infimum on the right hand side of (18) is the distance ofA from the set of stable
matrices [12]. We will demonstrate in our numerical experiments that (asexpected) the inequality
in (18) is strict. However, it is interesting to note that if(J∗, R∗, Q∗) is a stationary point of the right
hand side of (18) then(In, J∗, R∗, Q∗) is a stationary point of the left hand side of (18); see the
discussion in Section4.

A DAE with coefficient pair(E,A) and nonsingularE can be equivalently reformulated as a
standard system(In, AE−1), and then stability can be determined by the eigenvalues ofAE−1.
Thus again makingAE−1 stable, or equivalently,(In, AE−1) stable without perturbing the identity
matrix, gives an upper bound for the distance of(E,A) to the nearest stable matrix pair. Indeed,
w.l.o.g. if we scale(E,A) so that‖E‖F = 1, then

inf
(M,(J−R)Q)∈S

�0

DH

{‖E −M‖2F + ‖A− (J −R)Q‖2F }

≤ inf
(E,(J−R)Q)∈S

�0

DH

{‖A− (J −R)Q‖2F }

= inf
(In,(J−R)P )∈S

�0

DH

{‖A− (J −R)PE‖2F } (19)

≤ inf
(In,(J−R)P )∈S

�0

DH

{‖AE−1 − (J −R)P‖2F }, (20)

where (19) follows by first using the fact thatQTE = ETQ � 0 implies thatE−TQT = QE−1 � 0,
whereas in (20) we use the sub-multiplicativity of the Frobenius norm and‖E‖F = 1. Thus, for
nonsingularE, an upper bound can be computed by the reduction to a standardsystem. However,
the reduction process may be numerically unstable. Hence, it is advisable to work directly with the
pair (E,A) even for regular matrix pairs with invertibleE.

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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4. ALGORITHMIC SOLUTION TO THE NEAREST STABLE MATRIX PAIR PROBLEM

In this section, we propose an algorithm to solve the neareststable matrix pair problem using the
reformulation of Theorem5, i. e., to solve

inf
J=−JT , R�0, Q, M, QTM�0

{‖E −M‖2F + ‖A− (J −R)Q‖2F }. (21)

One of the first algorithms that comes to mind to solve (21) is a block-coordinate descent (BCD)
method (see for example [29]) with three blocks of variables(J,R), Q andM . In this case the
subproblems for each of the three blocks are convex when the others are fixed (these are least-
squares problems with linear or positive semidefinite constraints). However, we have observed that
this method is not very efficient in practice, since convergence is slow when one gets close to a
stationary point. Moreover, the BCD method can get easily stuck in saddle points. In particular,
consider a matrix pair of the form(In, A) and let(J,R,Q) be a fixpoint of the BCD method (with
two blocks of variables(J,R) andQ) for the nearest stable matrix problem

min
J=−JT ,R�0,Q�0

{‖A− (J −R)Q‖2F }.

Then(In, J, R,Q) is a fixpoint of the BCD method (with three blocks of variables(J,R),Q andM )
for (21). By construction, then the update of(J,R) andQ cannot be improved forM = In fixed,
whileM = In is optimal, since it is feasible and minimizes‖M − In‖F . This behavior of the BCD
method is illustrated in the following example.

Example 3
Consider a matrix pair(E,A), where

A =




1 1 0
−1 1 1
0 −1 1


 and E = In,

with eigenvalues1, 1±
√
2i. The representation(J,R,Q, In) with

J =




0 1 0
−1 0 1
0 −1 0


 , R = 0, Q = In, andM = In,

is a fixpoint of the BCD method for (21) with error‖A− (J −R)Q‖2F = 3 and we strongly believe
that(J −R)Q is the nearest stable matrix toA.

Using our fast projected gradient method that will be introduced below, initialized with this
solution, we obtain a nearest stable matrix pair with much lower distance

‖A− (J −R)Q‖2F + ‖M − In‖2F = 1.536.

One possible reason why the formulation (21) does not seem to lead to good solutions is that the
constraintQTM � 0 couples the variablesQ andM rather strongly. This motivated us to introduce
a further reformulation of (21), where the feasible set is free of any constraint that involves coupling
of some of its variables and onto which it is easy to project.

4.1. Reformulation of(21)

The formulation (21) is not convenient for standard optimization schemes, suchas a projected
gradient method, because the feasible set is highly non-convex with the constraintsQTM � 0,
and this constraint seems to prevent standard optimizationschemes to converge to good solutions,
as demonstrated in Example3. To overcome this dilemma we introduce a new variableH such
thatH = QTM = MTQ � 0 in (21), which corresponds to the Hamiltonian for port-Hamiltonian

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
Prepared usingnlaauth.cls DOI: 10.1002/nla



COMPUTING NEAREST STABLE MATRIX PAIRS 11

descriptor systems, see [2]. This results in the following optimization problem with a modified
feasible set and objective function

inf
J=−JT ,R�0,Q invertibe,H�0

‖A− (J −R)Q‖2F + ‖E −Q−TH‖2F . (22)

Note that the values of the infimum in (21) and (22) coincide. In fact,(M,J,R,Q), whereQ is
invertible is a solution for (21) with the optimal valueµ if and only if (H = QTM,J,R,Q), where
Q is invertible is a solution for (22) with the optimal valueµ. This implies that the infimum in (22)
is given by

inf
J=−JT ,R�0,Q invertibe,M,QTM�0

‖A− (J −R)Q‖2F + ‖E −M‖2F . (23)

Furthermore, the closeness of the setS
�0
DH implies that (23) coincides with (21). The feasible set

of (22) is rather simple, with no coupling of the variables, and it is relatively easy to project onto it.

Asymptotically stable DH pair If one want to obtain a DH pair withQ invertible andR � 0
so that(M, (J −R)Q) is regular, asymptotically stable and of index at most one, see Theorem4,
then the constraintsR � 0 andH � 0 can be replaced withR � δIn andH � δIn for some small
parameterδ > 0 that preventsR andH = QTM from being singular. As a consequence thenQ
will be invertible, since otherwiseQ−TH is unbounded. Numerically, it does not make the problem
much different, the projection is still rather straightforward.

The eigenvalues of the regular DH pair(E, (J −R)Q) can be highly sensitive to small
perturbations. This happens if the finite or infinite eigenvalues are multiple and defective or if
they are close to being multiple and the eigenvectors have a small angle. In fact, letλ be a simple
eigenvalue of(E, (J −R)Q) and letx be the corresponding eigenvector normalized to unit norm.
By (8) we have

Re (λ) = −x∗QTRQx

x∗QTEx
,

which implies that(−Re (λ), x) is an eigenvalue/eigenvector pair of the symmetric pencilL(z) :=
zQTE −QTRQ, sinceQTE � 0 andQTRQ � 0. Then, see e. g. [26], the normwise condition
number ofλ of L(z) is given by

κ(−Re (λ), L) =
1 + |Re (λ)|
x∗QTEx

,

which implies that

Re (λ) = −x∗QTRQx

x∗QTEx
= − x∗QTRQx

1 + |Re (λ)| κ(−Re (λ), L). (24)

Therefore, if κ(−Re (λ), L) is large, then a small perturbation can significantly perturb the
eigenvalues of(E, (J −R)Q). This is illustrated in the following example.

Example 4
Consider the matrix pair(I3, (J −R)Q), where

J =




0 1.5678 −19.1822
−1.5678 0 24.6845
19.1822 −24.6845 0


 , R =




0.1298 −0.3483 1.5035
−0.3483 1.1029 −4.0857
1.5035 −4.0857 17.4335




Q =




30.5907 −7.7841 −4.0069
−7.7841 33.9623 7.1589
−4.0069 7.1589 1.7035


 .

This is an asymptotically stable DH matrix pair with three simple eigenvaluesλ1 = −3.0083,
λ2 = −1.0011, andλ3 = −1.9905. The corresponding eigenvectors arex1 = [−0.0889, 0.1783, −

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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0.9799]T , x2 = [−0.0738, 0.1921, − 0.9786]T , andx3 = [−0.1091, 0.1633, − 0.9805]T . Clearly,
the eigenvectors are far away from being orthogonal and thisindicates that the eigenvalues are
sensitive. In fact, if we perturb the matrix(J −R)Q with the perturbation

∆ = (J̃ − R̃)Q̃ = 10−3




0.0465 −0.0930 0.5115
−0.0560 0.1120 −0.6160
−0.0145 0.0290 −0.1595


 ,

then the perturbed pair(I3, (J −R)Q−∆) has eigenvalues−2.3230± 0.6122i and −1.3539.
The eigenvalue condition numbers of pencilL(z) = zQT −QTRQ are κ(−λ1, L) = 949.4,
κ(−λ2, L) = 1262.4, andκ(−λ3, L) = 85.5.

In view of (24), the constraintsR � δIn andH � δIn will assure that every finite eigenvalueλ
of the DH pair(M, (J −R)Q) satisfies

Re (λ) = − x∗QTRQx

1 + |Re (λ)| κ(−Re (λ), L) ≤ −δ (σmin(Q))2

1 + |Re (λ)| κ(−Re (λ), L),

where κ(−Re (λ), L) is the condition number of−Re (λ) being a simple eigenvalue of the
symmetric pencilL(z) = zQTM −QTRQ, andσmin(Q) is the smallest singular value ofQ.

In practice, the user can increase the parameterδ progressively (e. g., restarting the algorithm
with the previous solution, increasingδ) in order to control the largest real part of the eigenvalues
of (E, (J −R)Q); see Remark1 for a numerical example.

4.2. Fast projected gradient algorithm

Following the spirit of [12], we use a fast projected gradient algorithm to solve (22) despite the fact
that it is a non-convex problem. The only non-trivial part inimplementing this method is to compute
the gradient of the objective function with respect toQ. We show in AppendixA that

1

2
∇Qf(J,R,Q,H) = (J −R)T ((J −R)Q−A) +Q−TH(ET −HQ−1)Q−T ,

wheref(J,R,Q,H) := ‖A− (J −R)Q‖2F + ‖E −Q−TH‖2F . A pseudocode for our fast projected
gradient methods is presented in Algorithm1.

Initialization To initialize the fast projected gradient approach we use a similar strategy as in the
matrix case, see [12]. For Q = In, the optimal solutions forJ , R andH in (22) can be computed
easily, and are given by

J =
A−AT

2
, R = P�

(−A−AT

2

)
, H = P�

(
ET

)
,

whereP� is the projection onto the set of positive semidefinite matrices.
Because of the non-convex nature of the problem, the solution obtained by our algorithm is highly

sensitive to the initial point. We observed that the above initial point provides in general good
solutions. Future work will require the development or moresophisticated initialization schemes
and possibly globalization approaches to obtain better solutions; see also Remark2 for a discussion.

Line-search For Q fixed, the Lipschitz constant of the gradient off with respect toH (resp.
(J,R)) is given byL = λmin(QQT )−1 (resp.L = λmax(QQT )), whereλmin(X) (resp.λmax(X))
denotes the smallest (resp. largest) eigenvalue of matrixX . Hence, performing a gradient step
with step lengthγ = 1 in the variableH (resp.(J,R)) will guarantee the decrease of the objective
function.In fact, for a convex optimization problem, using the step size1/L guarantees the objective
function to decrease, whereL is the Lipschitz constant of the gradient of the objective function, see,
e. g., [23]. For this reason, and since we initialize withQ = In, we choose an initial step length of

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.(2010)
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Algorithm 1 Fast Gradient Method (FGM) [23, p.90]

Require: The (non-convex) functionf(x), an initial guessx ∈ X , a number of iterationsK
Ensure: An approximate solutionx ≈ argminz∈X f(z).

1: α1 ∈ (0, 1); y = x ; initial step lengthγ = γ0 > 0.
2: for k = 1 : K do
3: x̂ = x. % Keep the previous iterate in memory.
4: x = PX (y − γ∇f(y)). %PX is the projection onX
5: while f(x) > f(x̂) andγ > γ do
6: Reduceγ.
7: x = PX (y − γ∇f(y)).
8: end while
9: if γ < γ then

10: Restart fast gradient:y = x; αk = α0; γ = γ0.
11: else
12: y = x+ βk (x− x̂), where βk = αk(1−αk)

α2
k
+αk+1

with αk+1 ≥ 0 s.t. α2
k+1 = (1−

αk+1)α
2
k.

13: end if
14: Increaseγ.
15: end for

γ = λmin(QQT )−1 = λmin(In)
−1 = 1. If it does not lead to a decrease of the objective function,

then we decreaseγ by a constant factor (we used 2/3). This is a standard backtracking line-search
strategy. If no decrease of the objective function is possible, i. e. if the step length is smaller than
some thresholdγ, then we restart the fast gradient scheme with a standard gradient step, which
guarantees convergence. At the next step, we use a slightly larger step length than the previous step
to avoid the step length to go to zero, e. g. by multiplyingγ by a constant factor; we used 2.

Convergence Algorithm1 is guaranteed to decrease the objective function value which is bounded
below (as we restart FGM when decrease is not achieved; see step 10), hence the objective function
values converge. For every iterate(J,R,Q,H), we have

‖A− (J −R)Q‖2F + ‖E −Q−TH‖2F ≤ f0,

wheref0 is the initial value of the objective function of (22). This implies that every iterate is such
that(J − R)Q andQ−TH are in a bounded set hence there exists a subsequence of iterates such that
(J −R)Q andQ−TH converge to some limit point. Recall thatA is approximated by(J −R)Q
andE by Q−TH so there will be a converging subsequence for the approximation of the matrix
pair (E,A). Moreover, every iterate is stable since it is in DH form (Theorem1). However, it is
more difficult to prove convergence of the sequence of iterates(J,R,Q,H), because the feasible
set is not bounded. A simple way to fix this is to constrain the variablesX = (J,R,Q,H) to be
bounded, e. g.,‖X |‖F ≤ C for some sufficiently large constantC, and modify the projection steps
accordingly. However, we have not observed that this was an issue in our numerical experiments
so we have not added such a safety procedure in our algorithm.Providing a rigorous convergence
proof of the iterates generated by Algorithm1 is nontrivial, and is out of the scope of this paper.

5. NUMERICAL EXAMPLES

The numerical examples presented below can be directly run from the online code available from
https://sites.google.com/site/nicolasgillis/. The algorithm runs inO(n3)
operations, including projections on the set of positive semidefinite matrices, inversion of the matrix
Q and all necessary matrix-matrix products. Our algorithm can be applied on a standard desktop
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14 N. GILLIS, V. MEHRMANN, P. SHARMA

computer withn up to a thousand. As far as we know, no other algorithm has beenproposed for the
computation of the nearest stable matrix pair. Therefore, we cannot compare to an existing method,
so for illustration of our results we will only compare our fast gradient method with the projected
gradient method (GM), which is simply FGM where restart is used at every step.Although it will not
be surprising that FGM converges significantly faster than GM, we believe it is interesting to validate
this behavior as it is not supported by a theoretical result in the non-convex case. For simplicity, we
limit the CPU time to 10 seconds for all experiments. However, in practice, we recommend to stop
the algorithm when the objective function values stagnatesand/or when the iterates(J,R,Q,H) do
not change much between several iterations.

5.1. Case 1:(In, A)

Let us take asA the Grcar matrix from [12] andE = In. The Grcar matrix of orderk is a banded
Toeplitz matrix with its subdiagonal set to−1, and both its main andk superdiagonals set to 1.

We usen = 20 andk = 3. The nearest stable matrix̃A to A found in [12] satisfies‖A− Ã‖2F =
23.51. Figure1 shows the evolution of the objective function of (21). Our FGM achieves a objective
function value‖A− (J −R)Q‖2F + ‖E −Q−TH‖2F = 6.28. Note that FGM converges much faster
than GM.
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Figure 1. Evolution of the objective function for FGM and GM for the matrix pair(In, A) whereA is a
20× 20 Grcar matrix of order3. The right figure is a zoom of the left figure and shows the fast convergence

of FGM compared to GM.

5.2. Case 2: RandomA and rank-deficientE

In our second example, we generate each entry ofA using the normal distribution of mean0 and
standard deviation1 (randn(n) in Matlab). We generateE so as it has rankr, by takingE as the
best rank-r approximation of a matrix generated randomly in the same wayasA. We usen = 20
andr = 3.

For these types of matrices, usually the algorithm converges to a rank-deficient solution, i. e.
R,H,Q are not of full rank, hence it is useful to use the lower bound for the eigenvalues to obtain
better numerical stability; we useδ = 10−6.

Figure2 shows the evolution of the objective function of (21) for a particular example. On all the
examples that we have run, FGM always converged much faster and generated a significantly better
solution than GM, similarly as shown on Figure2.

5.3. Case 3: Mass-spring-damper model

Let us consider a lumped parameter, mass-spring-damper dynamical system, see, e. g., [28] with
n point masses andn spring-damper pairs. The equations of motion can be writtenin the form of
second order system of differential equations as

Mü+Du̇+Ku = f, (25)
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Figure 2. Evolution of the objective function for the different algorithms for matrix pair(E,A) whereA is
Gaussian andE is the best rank-r approximation of a Gaussian matrix,n = 20 andr = 3.

whereM � 0 is the mass matrix,D � 0 is the damping matrix andK � 0 is the stiffness matrix,
f, u, u̇, ü are the forces, displacement, velocity and acceleration vectors, respectively.

An appropriate first order formulation of (25) is associated with the DH pencilλE −A, where

E =

[
M 0
0 In

]
, A = (J −R)Q, J =

[
0 −In
In 0

]
, R =

[
D 0
0 0

]
, Q =

[
In 0
0 K

]
.

(26)
SinceE is invertible, the pair(E,A) is regular and of index zero, and thus from Theorem1 is also
stable. In order to make the pair unstable, we perturb the dissipation matrix to become indefinite via

R =

[
D 0
0 −εIn

]
.

We usen = 10 andε = 0.1 which moves some eigenvalues to the open right half of the complex
plane (see Figure4 below).

The corresponding mass vectorm containing the point masses, spring vectork containing the
spring constants, and damping vectorc containing the damping constants are all equal to the vector

m = c = k =
[
1 2 3 4 5 6 7 8 9 10

]
.

Figure3 shows the evolution of the objective function (22). We used the initialization from (26),
i. e. we used the trueJ , R andQ from the known stable system to see whether an approximation
better than the original stable pencil can be found. (Note that if we use our standard initialization,
see Section4.2, FGM converges to another local minimum with higher approximation error32.70.)

We observe that FGM converges much faster than GM, as in the two other examples, while it is
able to generate a better approximation than the FGM from [12] applied on the nearest stable matrix
problem(I, E−1A), as already noted in Section5.1. We also observe that the algorithms are able,
rather surprisingly, to significantly reduce the value of the objective compared to the initialization
(which is the original stable pencil), from21.97 to 6.53 for FGM (DH matrix), to12.70 for GM (DH
pair), and to4.09 for FGM (DH pair). Figure4 shows the location of the eigenvalues of the pencils
(E,A) generated by the FGM using a DH matrix and a DH pair, as well as those of the original and
perturbed pencils.

Remark 1
In the mass-spring-damper example, we did not impose a lowerbound of the eigenvalues ofR and
MTQ. Let us rerun this experiment with different values ofδ. We initialize Algorithm1 with the
solution obtained with the previous values ofδ and run it with a time limit of 20 seconds.

TableI summarizes the result (note that the error forδ = 0 is smaller than in the result presented
above because we run Algorithm1 for 20 more seconds).
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Figure 3. Evolution of the objective function for the different algorithms for matrix pair(E,A) for the
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Figure 4. Eigenvalues of various pencils corresponding to the mass-spring-damper system.

Table I. Largest real part of the eigenvalues of(M, (J −R)Q) and error of the approximation depending on
the value of the parameterδ, whereR � δI andH � δI is imposed in (22).

δ 0 10−6 10−3 10−2 0.1 0.2 0.5
maxi(Re(λi) -1.3 10−5 -1.5 10−5 -0.0021 -0.0028 -0.017 -0.047 -0.17

Error 3.69 3.69 3.76 4.46 4.33 4.78 4.28

As discussed at the end of Section4.1, the largest real part of the eigenvalues of(M, (J −R)Q)
decreases asδ increases. Note however that the error does not necessarilydecrease although the
problem is more constrained asδ increases. This is explained by the difficulty (non-convexity) of
the problem: the algorithm converged to another local minimum, escaping the previous one with a
smaller value ofδ that did not satisfy the tighter constraints.

For example, if we initialize the problem forδ = 0.2 with the solutionδ = 0.5, we will obtain a
better solution than the one from TableI. In fact, it is able to converge to a much better solution with
error 2.61 withmaxi(Re(λi(M, (J −R)Q) = −0.05. If we now initialize the problem forδ = 0
with this solution, we obtain an error of 2.46, andmaxi(Re(λi(M, (J −R)Q) = −7.8 10−6. This
illustrates the sensitivity of Algorithm1 to initialization. Moreover, it shows that playing around
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with the parameterδ actually would be a good strategy to escape local minima. This is a topic for
further investigation.

Remark 2
As mentioned in Section4.2, Algorithm 1 is sensitive to initialization and designing more
sophisticated schemes is a topic for further research. To illustrate this fact, we use the mass-spring-
damper example with random initializations: each entry ofJ , R, Q andH are generated using the
normal distribution of mean 0 and standard deviation 1, and are then projected onto the feasible set.
Using 100 such initializations, the average error is 20.95,with standard deviation 12.70. The best
solution obtained has error 7.64, and the worst has error 107.64. Hence, the best error is better than
our standard initialization (with error 32.70) but worse than the true initialization (with error 4.09).
This shows that random initialization can sometimes be a useful strategy, and perform better than the
standard initialization (90% of the solutions generated with the random initialization had a smaller
error). However, in some other examples (e. g., the Grcar matrix described above), it performed
much worse. This is a topic for further research.

CONCLUSIONS

We have considered the problem of computing the nearest stable matrix pair to a given unstable
one. We have presented a new characterization of the set of stable matrix pairs using DH matrix
pairs, defined as(E, (J −R)Q) whereJ = −JT , R � 0, andQTE � 0 with Q invertible. This has
allowed us to reformulate the nearest stable matrix pair problem in a more convenient way for which
we develop an efficient fast gradient method.

Possible future works include the development of more sophisticated ways to solve (22), apply
globalization approaches to obtain better solutions,and to study other applications of the DH
characterization of a stable matrix pair.
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A. GRADIENT OFf WITH RESPECT TOQ

In this section, we explain how to compute the gradient of

f(J,R,Q,H) =
1

2
‖A− (J −R)Q‖2F +

1

2
‖E −Q−TH‖2F ,

with respect toQ, denoted by∇Qf(Q). For the first term, we have

∇Q

1

2
‖A− (J −R)Q‖2F = −(J −R)T (A− (J −R)Q).

For the second term, we need to compute∇Q‖E −Q−TH‖2F . Using the basic rules for matrix
differentiation, see e. g. [17, 24],

(i) Linear:
∇X tr

(
WX

)
= WT , ∇X tr

(
WXT

)
= A.

(ii) Product:
∇X tr

(
G(X)F (X)

)
= ∇X tr

(
F (Y )G(X) + F (X)G(Y )

)
|Y=X .

(iii) Inverse:
∇X tr

(
WF−1(X)

)
= −∇X tr

(
F−1(Y )WF−1(Y )F (X)

)
|Y=X ,

we obtain (considering the transpose matrixET −HQ−1),

∇Q‖ET −HQ−1‖2F = ∇Q tr
(
(ET −HQ−1)T (ET −HQ−1)

)
= ∇Q tr(Q−THTHQ−1)− 2 tr(EHQ−1).

Using (ii) withF (Q) = HQ−1 andG(Q) = F (Q)T , we get for the first term

∇Q tr(G(Q)F (Q)) = ∇Q tr(F (Y )G(Q) + F (Q)G(Y ))|Y =Q

= ∇Q tr(F (Y )F (Q)T + F (Q)F (Y )T )|Y=Q

= 2∇Q tr(F (Q)F (Y )T )|Y =Q

= 2∇Q tr(HQ−1Y −THT )|Y =Q.
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Using (ii) again, now withG(Q) = HQ−1 andF (Q) = Y −THT which is a constant, we obtain

∇Q tr(HQ−1Y −THT ) = ∇Q tr(Y −THTHQ−1 + Y −THTHY −1) = ∇Q tr((Y −THTH)Q−1),

using (iii),W = Y −THTH, and (i),

∇Q tr((Y −THTH)Q−1)|Y =Q = −(Q−1Q−THTHQ−1)T = −Q−THTHQ−1Q−T .

For the second term we use (iii) and obtain

∇Q tr(EHQ−1) = −(Q−1EHQ−1)T = −Q−THTETQ−T .
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